Mathematische Zeitschrift

, Volume 288, Issue 1–2, pp 415–437 | Cite as

A Miyawaki type lift for \(\textit{GSpin}(2,10)\)

  • Henry H. Kim
  • Takuya Yamauchi


Let \(\mathfrak {T}_2\) (resp. \(\mathfrak {T}\)) be the Hermitian symmetric domain of \(\textit{Spin}(2,10)\) (resp. \(E_{7,3}\)). In previous work (Compos. Math 152(2):223–254, 2016), we constructed holomorphic cusp forms on \(\mathfrak {T}\) from elliptic cusp forms with respect to \(\textit{SL}_2(\mathbb {Z})\). By using such cusp forms we construct holomorphic cusp forms on \(\mathfrak {T}_2\) which are similar to Miyawaki lift constructed by Ikeda (Duke Math J 131:469–497, 2006) in the context of symplectic groups. It is conditional on the conjectural Jacquet–Langlands correspondence from \(\textit{PGSO}(2,10)\) to \(\textit{PGSO}(6,6)\).


Miyawaki type lift Langlands functoriality Ikeda lift Tube domain associated to orthogonal groups 

Mathematics Subject Classification

Primary 11F55 Secondary 11F70 22E55 20G41 



We would like to thank T. Ibukiyama, T. Ikeda, H. Katsurada, R. Lawther, A. Luzgarev, T. Moriyama and T. Sugano for their valuable comments. In particular Lawther sent very detailed notes [28] to us on the double coset decomposition in Sect. 4.1 and Luzgarev sent a mathematica code to the second author. Ikeda also pointed out several mistakes in a previous version. Without their help, this paper could not have been finished. Thanks are due to the referee who gave a very detailed report which pointed out several errors and helped us to clarify many points.


  1. 1.
    Arthur, J.: The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups. American Mathematical Society Colloquium Publications, 61. American Mathematical Society, Providence, RI (2013)Google Scholar
  2. 2.
    Asgari, M., Raghuram, A.: A cuspidality criterion for the exterior square transfer of cusp forms on \(GL(4)\). In: Clay Mathematics Proceedings, vol. 13, pp. 33–53, American Mathematical Society, Providence, RI (2011)Google Scholar
  3. 3.
    Asgari, M., Shahidi, F.: Generic transfer for general spin groups. Duke Math. J. 132, 137–190 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baily Jr., W.L.: An exceptional arithmetic group and its Eisenstein series. Ann. Math. 91, 512–549 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baily Jr., W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 84, 442–528 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. In: Proceedings of Symposia in Pure Mathematics, XXXIII, Automorphic forms, representations and L-functions, Part 1, pp. 189–207, AMS (1979)Google Scholar
  7. 7.
    Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 4,5 et 6, Paris (1981)Google Scholar
  8. 8.
    Chenevier, G., Renard, D.: Level one algebraic cusp forms of classical groups of small rank. Memoirs of the American Mathematical Society, vol. 237, American Mathematical Society, Providence (2015)Google Scholar
  9. 9.
    Demazure, M., Grothendieck, A. (Eds): Séminaire de Géométrie Algébrique du Bois Marie - 1962-64 - Schémas en groupes - (SGA 3) - vol. 1 (Lecture Notes in Mathematics 151)Google Scholar
  10. 10.
    Du, Z.: On the spectrum of \((Spin(10,2), SL(2,\mathbb{R}))\) in \(E_{7,3}\). Proc. AMS 139, 757–768 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eie, M.: Jacobi–Eisenstein series of degree two over Cayley numbers. Rev. Mat. Iberoam. 16, 571–596 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eie, M., Krieg, A.: The Maass space on the half-plane of Cayley numbers of degree two. Math. Z. 210(1), 113–128 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fulton, W., Harris, J.: Representation Theory, A First Course. Springer, New York (1991)zbMATHGoogle Scholar
  14. 14.
    Garrett, P.-B.: Pullbacks of Eisenstein series; applications. Automorphic forms of several variables (Katata, 1983). Progress in Mathematics, vol. 46, pp. 114–137, Birkhäuser Boston, Boston (1984)Google Scholar
  15. 15.
    Ginzburg, D.: On standard L-functions for \(E_6\) and \(E_7\). J. Reine Angew. Math. 465, 101–131 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gross, B.: Groups over \(\mathbb{Z}\). Invent. Math. 124(1–3), 263–279 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gross, B., Savin, G.: Motives with Galois group of type \(G_2\): an exceptional theta-correspondence. Comput. Math. 114, 153–217 (1998)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Helminck, A.G., Wang, P.: On rationality properties of involutions of reductive groups. Adv. Math. 99(1), 26–96 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ikeda, T.: On the lifting of elliptic cusp forms to Siegel cusp forms of degree \(2n\). Ann. Math. 154, 641–681 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ikeda, T.: Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture. Duke Math. J. 131, 469–497 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jacquet, H., Shalika, J.: On Euler products and the classification of automorphic representations I, II. Am. J. Math. 103(499–558), 777–815 (1981)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kim, H.: Exceptional modular form of weight 4 on an exceptional domain contained in \({\mathbb{C}}^{27}\). Rev. Mat. Iberoam. 9, 139–200 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kim, H.: On local \(L\)-functions and normalized intertwining operators. Can. J. Math. 57, 535–597 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kim, H., Yamauchi, T.: Cusp forms for exceptional group of type \(E_7\). Compos. Math. 152(2), 223–254 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Knapp, A.W.: Representation Theory of Semisimple Groups. Princeton University Press, Princeton (1986)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kitaoka, Y.: Arithmetic of quadratic forms. Cambridge Tracts in Mathematics, vol. 106. Cambridge University Press, Cambridge (1993)Google Scholar
  27. 27.
    Lawther, R.: Double cosets involving involutions in algebraic groups. Proc. Lond. Math. Soc. 70, 115–145 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lawther, R.: e-mail correspondencesGoogle Scholar
  29. 29.
    Li, J.S.: Some results on the unramified principal series of \(p\)-adic groups. Math. Ann. 292, 747–761 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Luzgarev, A., Vavilov, N.A.: A Chevalley group of type \(E_7\) in the 56-dimensional representation. (Russian. English, Russian summary) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 386 (2011), Voprosy Teorii Predstvalenii Algebr i Grupp. 20, 5–99, 288; translation in J. Math. Sci. 180(3), 197–251 (2012)Google Scholar
  31. 31.
    Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras III, Encyclopedia of Mathematical Sciences, vol. 41. Springer, Berlin (1990)zbMATHGoogle Scholar
  32. 32.
    Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory. Academic Press, Inc, Boston (1994)zbMATHGoogle Scholar
  33. 33.
    Ramakrishnan, D.: Modularity of the Rankin–Selberg L-series, and multiplicity one for \(SL(2)\). Ann. Math. 152(1), 45–111 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Satake, I.: Algebraic structures of symmetric domains. In: Kanô Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton (1980)Google Scholar
  35. 35.
    Sugano, T.: On Dirichlet series attached to holomorphic cusp fors on \(SO(2, q)\). Automorphic forms and number theory (Sendai, 1983). Adv. Stud. Pure Math. 7, 333–362 (1985)Google Scholar
  36. 36.
    Tadic, M.: Spherical unitary dual of general linear group over non-Archimedean local field. Ann. Inst. Fourier 36(2), 47–55 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tsao, L.: The rationality of the Fourier coefficients of certain Eisenstein series on tube domains. Compos. Math. 32, 225–291 (1976)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Korea Institute for Advanced StudySeoulKorea
  3. 3.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations