Advertisement

Mathematische Zeitschrift

, Volume 288, Issue 1–2, pp 125–133 | Cite as

Iwahori component of the Gelfand–Graev representation

  • Kei Yuen Chan
  • Gordan Savin
Article
  • 133 Downloads

Abstract

Let G be a split reductive group over a p-adic field F. Let B be a Borel subgroup and U the maximal unipotent subgroup of B. Let \(\psi \) be a Whittaker character of U. Let I be an Iwahori subgroup of G. We describe the Iwahori–Hecke algebra action on the Gelfand–Graev representation \((\mathrm {ind}_{U}^{G}\psi )^I\) by an explicit Hecke algebra module.

Notes

Acknowledgements

This work was initiated during the Sphericity 2016 Conference in Germany. The authors would like to thank the organizers for providing the excellent environment for discussions. Kei Yuen Chan was supported by the Croucher Postdoctoral Fellowship. Gordan Savin was supported in part by NSF Grant DMS-1359774.

References

  1. 1.
    Barbasch, D., Moy, A.: Whittaker models with an Iwahori-fixed vector. Contemp. Math. 177, 101–105 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borel, A.: Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup. Invent. Math. 35, 233–259 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bushnell, C.J.: Representations of reductive p-adic groups: localisation of Hecke algebras and applications. J. Lond. Math. Soc. 63(2), 364–386 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bushnell, C., Henniart, G.: Generalized Whittaker models and the Bernstein center. Am. J. Math. 125(3), 513–547 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cartier, P.: Representations of \(p\)-adic groups: a survey. Automorphic Forms, Representations and \(L\)-functions. In: Borel, A., Casselman, W. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 33, part 1, pp. 111–155. AMS, Providence (1979).Google Scholar
  6. 6.
    Chan, K.Y.: Duality for ext-groups and extensions of discrete series for graded Hecke algebras. Adv. Math. 294, 410–453 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Haines, T.J., Kottwitz, R.E., Prasad, A.: Iwahori–Hecke algebras. J. Ramanujan Math. Soc. 25(2), 113–145 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Iwahori, Matsumoto, H.: On some Bruhat decompositions and the structure of the Hecke ring of a \(p\)-adic Chevalley group. Publ. Math. IHES 25, 5–48 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kato, S.: On eigenspaces of the Hecke algebra with respect to a good maximal compact subgroup of a \(p\)-adic reductive group. Math. Ann. 257, 1–7 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lusztig, G.: Affine Hecke algebras and their graded versions. J. Am. Math. Soc. 2, 599–635 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Reeder, M.: p-adic Whittaker functions and vector bundles on flag manifolds. Compos. Math. 85, 9–36 (1993)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Satake, I.: Theory of spherical functions on reductive algebraic groups over \(p\)-adic fields. Publ. Math. IHES 18, 1–69 (1963)CrossRefzbMATHGoogle Scholar
  13. 13.
    Savin, G.: Local Shimura correspondence. Math. Ann. 280, 185–190 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Savin, G.: A tale of two Hecke algebras, arXiv:1202.1486

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Korteweg-de Vries Institute for MathematicsUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations