Mathematische Zeitschrift

, Volume 288, Issue 1–2, pp 23–37 | Cite as

An analogue of the Bombieri–Vinogradov Theorem for Fourier coefficients of cusp forms

  • Ratnadeep Acharya


We prove analogues of the Bombieri–Vinogradov Theorem and the Barban–Davenport–Halberstam Theorem on primes in arithmetic progressions for Fourier coefficients of cusp forms.



This work was done towards the author’s Ph.D. thesis at Indian Statistical Institute (ISI), Kolkata where he was a student. The author thanks Satadal Ganguly and Ritabrata Munshi for helpful suggestions. The author also thanks ISI for financial support and excellent working atmosphere.


  1. 1.
    Deligne, P.: La conjecture de Weil. I. Inst. Hautes Etudes Sci. Publ. Math. 43, 273–307 (1974). (French)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fouvry, E., Ganguly, S.: Strong orthogonality between the Möbious function, additive characters and Fourier coefficients of cusp forms. Compos. Math. 150(5), 763–797 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Halberstam, H.: Footnote to the Titchmarsh–Linnik divisor problem. Proc. Am. Math. Soc. 18, 187–188 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hoffstein, J., Ramakrishnan, D.: Siegel zeros and cusp forms. Int. Math. Res. Not. 6, 279–308 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Iwaniec, H.: Introduction to the spectral theory of automorphic forms. In: Biblioteca of Revista Mathematica Iberoamericana. Real Sociedad Mathematica Espanola, Madrid (1995)Google Scholar
  6. 6.
    Iwaniec, H., Friedlander, J.B.: Summation formulae for the coefficients of \(L\)-functions. Can. J. Math. 57(3), 494–505 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications, Providence (2004)zbMATHGoogle Scholar
  8. 8.
    Kim, H.: Functoriality for the exterior square of \(GL_4\) and symmetric fourth of \(GL_2\), with Appendix 1 by D. Ramakrishnan, and Appendix 2 by H. Kim and P. Sarnak. J. Am. Math. Soc. 16, 139–183 (2003)CrossRefGoogle Scholar
  9. 9.
    Lau, Y.K., Zhao, L.: On a variance of Hecke eigenvalues in arithmetic progressions. J. Number Theory 132(5), 869–887 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Linnik, J.V.: The dispersion method in binary additive problems. American Mathematical Society, RI (1963)Google Scholar
  11. 11.
    Montgomery, H.L.: Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, vol. 227. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  12. 12.
    Pitt, N.J.E.: On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms. J. Am. Math. Soc. 26, 735–776 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Titchmarsh, E.C.: A divisor problem. Rend. Circ. Mat. Palermo. 54, 414–429 (1930)Google Scholar
  14. 14.
    Vaughan, R.C.: Sommes trigonométriques sur les nombres premiers. C. R. Acad. Sci. Paris Sér. A-B 285, A981–A983 (1977)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Theoretical Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations