Skip to main content
Log in

Additive representation in short intervals, II: sums of two like powers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We establish that, for almost all natural numbers N, there is a sum of two positive integral cubes lying in the interval \([N-N^{7/18+\varepsilon },N]\). Here, the exponent 7 / 18 lies half way between the trivial exponent 4 / 9 stemming from the greedy algorithm, and the exponent 1 / 3 constrained by the number of integers not exceeding X that can be represented as the sum of two positive integral cubes. We also provide analogous conclusions for sums of two positive integral k-th powers when \(k\ge 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2) 633–682 (2016). arXiv:1512.01565

  2. Browning, T.D.: Equal sums of two \(k\)th powers. J. Number Theory 96(2), 293–318 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brüdern, J.: Cubic Diophantine inequalities III. Period. Math. Hungar. 42(1–2), 211–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brüdern, J., Wooley, T.D.: Additive representation in short intervals, I: Waring’s problem for cubes. Compos. Math. 140(5), 1197–1220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daniel, S.: On gaps between numbers that are sums of three cubes. Mathematika 44(1), 1–13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P.: On the integers of the form \(x^k+y^k\). J. Lond. Math. Soc. 14, 250–254 (1939)

    Article  MATH  Google Scholar 

  7. Erdős, P., Mahler, K.: On the number of integers that can be represented by a binary form. J. Lond. Math. Soc. 13, 134–139 (1938)

    Article  MATH  Google Scholar 

  8. Friedlander, J.B.: Sifting short intervals. Math. Proc. Cambr. Philos. Soc. 91(1), 9–15 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greaves, G.: On the representation of a number as a sum of two fourth powers. Math. Z. 94, 223–234 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greaves, G.: Representation of a number by the sum of two fourth powers. Mat. Zametki 55(2), 47–58, 188 (1994)

  11. Harman, G.: Sums of two squares in short intervals. Proc. Lond. Math. Soc. (3) 62(2), 225–241 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heath-Brown, D.R.: The density of rational points on cubic surfaces. Acta Arith. 79(1), 17–30 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Heath-Brown, D.R.: The density of rational points on curves and surfaces. Ann. Math. (2) 155(2), 553–595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hooley, C.: On the representations of a number as the sum of two cubes. Math. Z. 82, 259–266 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hooley, C.: On the representation of a number as the sum of two \(h\)-th powers. Math. Z. 84, 126–136 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hooley, C.: On the numbers that are representable as the sum of two cubes. J. Reine Angew. Math. 314, 146–173 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Hooley, C.: On another sieve method and the numbers that are a sum of two \(h\)th powers. Proc. Lond. Math. Soc. (3) 43(1), 73–109 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hooley, C.: On the intervals between numbers that are sums of two squares: IV. J. Reine Angew. Math. 452, 79–109 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Hooley, C.: On another sieve method and the numbers that are a sum of two \(h\)th powers: II. J. Reine Angew. Math. 475, 55–75 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Plaksin, V.A.: The distribution of numbers that can be represented as the sum of two squares. Izv. Akad. Nauk SSSR Ser. Mat 51(4), 860–877, 911 (1987)

  21. Plaksin, V.A.: Letter to the editors: “The distribution of numbers that can be represented as the sum of two squares. [Izv. Akad. Nauk SSSR Ser. Mat. 51(4), 860–877, 911 (1987)]. Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 908–909 (1992)

  22. Salberger, P.: Rational points of bounded height on projective surfaces. Math. Z. 258(4), 805–826 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Skinner, C.M., Wooley, T.D.: Sums of two \(k\)th powers. J. Reine Angew. Math. 462, 57–68 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Vaughan, R.C.: Sums of three cubes. Bull. Lond. Math. Soc. 17(1), 17–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaughan, R.C.: On Waring’s problem for smaller exponents. Proc. Lond. Math. Soc. (3) 52(3), 445–463 (1986)

    Article  MATH  Google Scholar 

  26. Vaughan, R.C.: On Waring’s problem for sixth powers. J. Lond. Math. Soc. 33(2), 227–236 (1986)

    Article  MATH  Google Scholar 

  27. Vaughan, R.C.: The Hardy–Littlewood Method, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  28. Vaughan, R.C., Wooley, T.D.: On Waring’s problem: some refinements. Proc. Lond. Math. Soc. (3) 63(1), 35–68 (1991)

    Article  MATH  Google Scholar 

  29. Wooley, T.D.: Sums of two cubes. Int. Math. Res. Not. (4), 181–184 (1995)

  30. Wooley, T.D.: Vinogradov’s mean value theorem via efficient congruencing. Ann. Math. (2) 175(3), 1575–1627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wooley, T.D.: The cubic case of the main conjecture in Vinogradov’s mean value theorem. Adv. Math. 294, 532–561 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Brüdern.

Additional information

Jörg Brüdern acknowledges support by Deutsche Forschungsgemeinschaft. Trevor D. Wooley is grateful for the support and excellent working conditions provided at Mathematisches Institut, Göttingen, through the Gauss Professorship of Akademie der Wissenschaften zu Göttingen, which greatly facilitated the preparation of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brüdern, J., Wooley, T.D. Additive representation in short intervals, II: sums of two like powers. Math. Z. 286, 179–196 (2017). https://doi.org/10.1007/s00209-016-1759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1759-x

Keywords

Mathematics Subject Classification

Navigation