Mathematische Annalen

, Volume 315, Issue 3, pp 497–501 | Cite as

Fibrés vectoriels stables avec \(\chi=0\) sur une surface abélienne simple

  • Cristian Anghel
Original article
Mathematics Subject Classification (1991):14D, 14J 


The aim of this work is to establish a birational description of some components of the moduli space of rank two stable vector bundles with \(\chi = 0\) over a simple abelian surface.

We describe these bundles as extensions of rank one torsion free sheaves. Subsequently we apply Mukai's Fourier transform for obtaining the birational description of one component in the moduli space. Also, we make the same thing for some bundles of higher rank, with vanishing first Chern class and \(\chi = -2\). Thereafter we establish a description of one component of the moduli space of simple bundles with arbitrary rank and and \(\chi = 0\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Cristian Anghel
    • 1
  1. 1.Insitute of Mathematics of the Romanian Academy, P.O.Box 1–764, RO–70700 Bucharest, Romania (Fax: 40 1 222 98 26) RO

Personalised recommendations