Abstract
We prove that \(L_2(\mathbb {R})\) contains a Schauder basis of non-negative functions. Similarly, for all \(1<p<\infty \), \(L_{p}(\mathbb {R})\) contains a Schauder basic sequence of non-negative functions such that \(L_p(\mathbb {R})\) embeds into the closed span of the sequence. We prove as well that if X is a separable Banach space with the bounded approximation property, then any set in X with dense span contains a quasi-basis (Schauder frame) for X.
This is a preview of subscription content, access via your institution.
Data availability statement
The manuscript has no associated data.
References
- 1.
Albiac, F., Kalton, N.J.: Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)
- 2.
Atzmon, A., Olevskii, A.: Completeness of integer translates in function spaces on \(\mathbb{R}\). J. Approx. Theory 87, 291–327 (1996)
- 3.
Berasategui, M., Carando, D.: Unconditional Frames of Translates in \(L_p(\mathbb{R}^d)\). Isr. J. Math. 238, 687–713 (2020)
- 4.
Faber, G.: Ueber die Orthogonalfunktionen des Herrn Haar. Jahresber. Deutsch. Math. Verein. 19, 104–112 (1910)
- 5.
Freeman, D., Odell, E., Schlumprecht, T., Zsák, A.: Unconditional structures of translates for \(L_p(\mathbb{R}^d)\). Isr. J. Math. 203(1), 189–209 (2014)
- 6.
Glezer, V.D.: Vision and Mind: Modeling Mental Functions. Elsevier, New York, NY (1989)
- 7.
Ghanbari, Y., Herrington, J., Gur, R., Schultz, R., Verma, R.: Locality preserving non-negative basis learning with graph embedding. Inf. Process Med. Imaging 23, 316–327 (2013)
- 8.
Gumenchuk, A., Karlova, O., Popov, M.: Order Schauder bases in Banach lattices. J. Funct. Anal. 269(2), 536–550 (2015)
- 9.
Johnson, W.B., Schechtman, G.: A Schauder basis for \(L_1(0,\infty )\) consisting of non-negative functions. Ill. J. Math. 59(2), 337–344 (2015)
- 10.
Leung, D.H., Li, L., Oikhberg, T., Tursi, M.A.: Separable universal Banach lattices. Isr. J. Math. 230, 141–152 (2019)
- 11.
Lacey, E., Wojtaszczyk, P.: Banach lattice structures on separable \(L_p\) spaces. Proc. Am. Math. Soc. 54, 83–89 (1976)
- 12.
Meyer-Nieberg, P.: Banach lattices. Springer, Berlin (1991)
- 13.
Nikolski, N.: The multiple shift with a simple spectrum. Zap. Nauch. Sem. LOMI 19, 227–236 (1970). [in Russian]; Sem. Math. V. A. Steklov Math. Inst. Leningrad 19, 132-136 (1970) [Engl. transl.]
- 14.
Nikolski, N.: Selected problems of weighted approximation and spectral analysis. Trudy Math. Inst. Steklova 120, 3–272 (1974). [in Russian; Proc. Steklov Math. Inst. 120, 1–276 (1974)]
- 15.
Nikolski, N.: Remarks concerning completeness of translates in function spaces. J. Approx. Theory 98, 303–315 (1999)
- 16.
Nikolski, N., Volberg, A.: On the sign distributions of Hilbert space frames. Anal. Math. Phys. 9, 1115–1132 (2019)
- 17.
Olevskii, A.: Completeness in \(L_2(\mathbb{R})\) of almost integer translates. C. R. Acad. Sci. Paris 324, 987–991 (1979)
- 18.
Odell, E., Sari, B., Schlumprecht, T., Zheng, B.: Systems formed by translates of one element in \(L_p(\mathbb{R})\). Trans. Am. Math. Soc. 363(12), 6505–6529 (2011)
- 19.
Olson, T.E., Zalik, R.A.: Nonexistence of a Riesz Basis of Translation, Approximation Theory, Lecture Notes in Pure and Applied Math., vol. 138, pp. 401–408. Dekker, New York (1992)
- 20.
Pelczynski, A.: Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis. Studia Math. 40(3), 239–243 (1971)
- 21.
Powell, A., Spaeth, A.H.: Nonnegativity constraints for spanning systems. Trans. Am. Math. Soc. 368, 5783–5806 (2016)
- 22.
Semadeni, Z.: Schauder bases in Banach spaces of continuous functions. Springer, Berlin, Heidelberg, New York (1982)
- 23.
Singer, I.: Bases in Banach spaces I. Springer, New York (1970)
- 24.
Taylor, M.A., Troitsky, V.G.: Bibasic sequences in Banach lattices. J. Funct. Anal. 278(10), 108448 (2020)
- 25.
Wiener, N.: Tauberian theorems. Ann. Math. 33(1), 1–100 (1932)
Acknowledgements
We thank the anonymous referee for their careful reading of the paper and helpful comments. The second author gratefully acknowledges the hospitality and support of the Academia Sinica Institute of Mathematics (Taipei, Taiwan).
Funding
Daniel Freeman was supported by Grants 353293 and 706481 from the Simons Foundation. Alexander M. Powell was supported by NSF DMS Grant 1521749.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by Loukas Grafakos.
Rights and permissions
About this article
Cite this article
Freeman, D., Powell, A.M. & Taylor, M.A. A Schauder basis for \(L_2\) consisting of non-negative functions. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02143-4
Received:
Revised:
Accepted:
Published:
Mathematics Subject Classification
- 46B03
- 46B15
- 46E30
- 42C15