Skip to main content
Log in

On \(L^p\)-viscosity solutions of bilateral obstacle problems with unbounded ingredients

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The global equi-continuity estimate on \(L^p\)-viscosity solutions of bilateral obstacle problems with unbounded ingredients is established when obstacles are merely continuous. The existence of \(L^p\)-viscosity solutions is established via an approximation of given data. The local Hölder continuity estimate on the first derivative of \(L^p\)-viscosity solutions is shown when the obstacles belong to \(C^{1,\beta }\), and \(p>n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouchi, A., Parviainen, M.: Hölder regularity for the gradient of the inhomogeneous parabolic normalized \(p\)-Laplacian. Commun. Contemp. Math. 20(4), 1750035 (2018). 27 pp

    MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. Math. 47(1), 47–92 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Brézïs, H., Stampacchia, G.: Sur la régularité de la solution des inéquations elliptiques. Bull. Soc. Math. France 96, 153–180 (1968)

    MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L. A., and Cabré, X.: Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloquium Publ., 43, (1995)

  6. Caffarelli, L.A., Crandall, M.G., Kocan, M., Świȩch, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49(4), 365–397 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Codenotti, L., Lewicka, M., Manfredi, J.: Discrete approximations to the double-obstacle problem and optimal stopping of tug-of-war games. Trans. Amer. Math. Soc. 369(10), 7387–7403 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27(1), 1–67 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Crandall, M.G., Kocan, M., Lions, P.-L., Świȩch, A.: Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations. Electron. J. Differ. Equ. 1999(24), 1–22 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Dai, M., Yi, F.: Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem. J. Differ. Equ. 246(4), 1445–1469 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Dal Maso, G., Mosco, U., Vivaldi, M.A.: A pointwise regularity theory for the two-obstacle problem. Acta Math. 163(1–2), 57–107 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Duque, L. F.: The double obstacle problem on non divergence form, arXiv:1709.07072v1

  13. Escauriaza, L.: \(W^{2, n}\) a priori estimates for solutions to fully non-linear equations. Indiana Univ. Math. J. 42(2), 413–423 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Evans, L.C.: Classical solutions of the Hamilton-Jacobi-Bellman equations for uniformly elliptic operators. Trans. Amer. Math. Soc. 275(1), 245–255 (1983)

    MathSciNet  Google Scholar 

  15. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, Second Edition, Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006)

    Google Scholar 

  16. Friedman, A.: Variational Principles and Free-Boundary Problems. A Wiley-Interscience Publication, New York (1982)

    MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, GMW 224. Springer-Verlag, Berlin-New York (1977)

    MATH  Google Scholar 

  18. Jensen, R.: Boundary regularity for variational inequalities. Indiana Univ. Math. J. 29(4), 495–504 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, vol. 88. Academic Press, New York-London (1980)

    MATH  Google Scholar 

  20. Koike, S., Świȩch, A.: Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients. J. Math. Soc. Japan 61(3), 723–755 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Koike, S., Świȩch, A.: Local maximum principle for \(L^p\)-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Comm. Pure Appl. Anal. 11(5), 1897–1910 (2012)

    MATH  Google Scholar 

  22. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, GSM 12. American Mathematical Society, Providence (1996)

    Google Scholar 

  23. Lee, K.-A., and Park, J.: The regularity theory for the double obstacle problem for fully nonlinear operator, arXiv:1805.02806v2

  24. Lee, K.-A., Park, J. and Shahgholian, H.: The regularity theory for the double obstacle problem, arXiv:1703.06262v1

  25. Lenhart, S.: Bellman equations for optimal stopping time problems. Indiana Univ. Math. J. 32(3), 363–375 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Lewy, H., Stampacchia, G.: On the regularity of the solution of a variational inequality. Comm. Pure Appl. Math. 22, 153–188 (1969)

    MathSciNet  MATH  Google Scholar 

  27. Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. 20(3), 493–519 (1967)

    MathSciNet  MATH  Google Scholar 

  28. Miller, K.: Barriers on cones for uniformly elliptic operators. Ann. Mat. Pura Appl. (4) 76, 93–105 (1967)

    MathSciNet  MATH  Google Scholar 

  29. Moosavi, P., Reppen, M.: A Review of the Double Obstacle Problem, a Degree Project. KTH Stockholm, Stockholm (2011)

    Google Scholar 

  30. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-Type Problems, GSM 136. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  31. Świȩch, A.: \(W^{1, p}\)-interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv. Differ. Equ. 2(6), 1005–1027 (1997)

    MATH  Google Scholar 

  32. Tateyama, S.: On \(L^p\)-viscosity solutions of parabolic bilateral obstacle problems with unbounded ingredients, Preprint

  33. Teixeira, E.V.: Universal moduli of continuity for solutions to fully nonlinear elliptic equations. Arch. Rational Mech. Anal. 211(3), 911–927 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Touzi, N.: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Fields Institute Monographs, vol. 29. Springer, New York (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their careful reading, and several valuable comments, which help us to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Koike.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Koike: Supported in part by Grant-in-Aid for Scientific Research (No. 16H06339, 16H03948, 16H03946 ) of JSPS.

S. Tateyama: Supported by Grant-in-Aid for JSPS Research Fellow (No. 16J02399), and for Scientific Research (No. 16H06339).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, S., Tateyama, S. On \(L^p\)-viscosity solutions of bilateral obstacle problems with unbounded ingredients. Math. Ann. 377, 883–910 (2020). https://doi.org/10.1007/s00208-019-01854-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01854-z

Mathematics Subject Classification

Navigation