Skip to main content
Log in

Modularity lifting theorems for ordinary Galois representations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We generalize results of Clozel, Harris and Taylor by proving modularity lifting theorems for ordinary l-adic Galois representations of any dimension of an imaginary CM or totally real number field. The main theorems are obtained by establishing an \(R^{{{\mathrm{red}}}}={\mathbb {T}}\) theorem over a Hida family. A key part of the proof is to construct appropriate ordinary lifting rings at the primes dividing l and to determine their irreducible components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In fact, the main theorems also prove that r is automorphic of level prime to l if r is crystalline above l. For this statement, we apply the Taylor-Wiles-Kisin method using fixed weight crystalline ordinary lifting rings for v|l. We show that these crystalline rings are irreducible when the residual representation is trivial at each v|l.

References

  1. Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Astérisque 324, xii+314 (2009)

  2. Borel, A., Jacquet, H.: Automorphic forms and automorphic representations, Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., vol. XXXIII. Amer. Math. Soc., Providence, R.I. (1979) (With a supplement “On the notion of an automorphic representation” by R. P. Langlands, pp. 189–207)

  3. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi–Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borel, A.: Some finiteness properties of adele groups over number fields. Inst. Hautes Études Sci. Publ. Math. 16, 5–30 (1963)

  5. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups. I. Ann. Sci. École Norm. Sup. (4) 10(4), 441–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casselman, W.: Introduction to the theory of admissible representations of \(p\)-adic reductive groups (1995) (Preprint)

  7. Colmez, P., Fontaine, J.-M.: Construction des représentations \(p\)-adiques semi-stables. Invent. Math. 140(1), 1–43 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conrad, B.: Lifting global representations with local properties (Preprint)

  9. Chenevier, G., Harris, M.: Construction of automorphic Galois representations II. Camb. Math. J. 1(1), 53–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clozel, L., Harris, M., Taylor, R.: Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. Publ. Math. Inst. Hautes Études Sci. 108, 1–181 (2008) (With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras)

  11. Fontaine, J.-M.: Représentations \(p\)-adiques semi-stables. Astérisque 223, 113–184 (1994) [With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988)]

  12. Geraghty, D., Gee, T.: Companion forms for unitary groups and symplectic groups. Duke Math. J. 161(2), 247–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 361 (1967)

  14. Gross, B.H.: Algebraic modular forms. Isr. J. Math. 113, 61–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guerberoff, L.: Modularity lifting theorems for Galois representations of unitary type. Compos. Math. 147(4), 1022–1058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hida, H.: On \(p\)-adic Hecke algebras for \({{\rm GL}}_2\) over totally real fields. Ann. Math. (2) 128(2), 295–384 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hida, H.: On nearly ordinary Hecke algebras for \({{\rm GL}}(2)\) over totally real fields, Algebraic number theory. Adv. Stud. Pure Math. 17, 139–169 (1989) (Academic Press, Boston, MA)

  18. Hida, H.: Control theorems of \(p\)-nearly ordinary cohomology groups for \({\rm SL}(n)\). Bull. Soc. Math. Fr. 123(3), 425–475 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hida, H.: Automorphic induction and Leopoldt type conjectures for \({\rm GL}(n)\). Asian J. Math. 2(4), 667–710 (1998) (Mikio Sato: a great Japanese mathematician of the twentieth century)

  20. Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001) (With an appendix by Vladimir G. Berkovich)

  21. Jantzen, J.C.: Representations of Algebraic Groups, 2nd edn. Mathematical Surveys and Monographs, vol. 107. American Mathematical Society, Providence, RI (2003)

  22. Kisin, M.: Overconvergent modular forms and the Fontaine–Mazur conjecture. Invent. Math. 153(2), 373–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kisin, M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21(2), 513–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Labesse, J.-P.: Changement de base CM et séries discrètes, On the stabilization of the trace formula. Shimura Var. Arith. Appl. 1, 429–470 (2011) (Int. Press, Somerville, MA)

  25. Mauger, D.: Algèbres de Hecke quasi-ordinaires universelles. Ann. Sci. École Norm. Sup. (4) 37(2), 171–222 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazur, B.: Deforming Galois representations, Galois groups over \({\bf Q}\) (Berkeley, CA, 1987). Math. Sci. Res. Inst. Publ. 16, 385–437 (1989) (Springer, New York)

  27. Nekovář, J.: On \(p\)-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–1991, Progr. Math., vol. 108, pp. 127–202. Birkhäuser Boston, Boston (1993)

  28. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2008)

  29. Shin, S.W.: Galois representations arising from some compact Shimura varieties. Ann. Math. (2) 173(3), 1645–1741 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Taylor, R.: Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. II. Publ. Math. Inst. Hautes Études Sci. 108, 183–239 (2008)

  31. Tilouine, J., Urban, E.: Several-variable \(p\)-adic families of Siegel–Hilbert cusp eigensystems and their Galois representations. Ann. Sci. École Norm. Sup. (4) 32(4), 499–574 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zelevinsky, A.V.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups. II. On irreducible representations of \({\rm GL}(n)\). Ann. Sci. École Norm. Sup. (4) 13(2), 165–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor, Richard Taylor, for suggesting this problem and for his invaluable support and assistance. I thank Toby Gee for many useful conversations and for comments on an earlier draft of this paper. I thank Haruzo Hida and Brian Conrad for kindly answering questions, and Florian Herzig for comments on earlier draft of the paper. Finally, I thank the anonymous referee for helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Geraghty.

Additional information

Communicated by Toby Gee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geraghty, D. Modularity lifting theorems for ordinary Galois representations. Math. Ann. 373, 1341–1427 (2019). https://doi.org/10.1007/s00208-018-1742-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1742-4

Navigation