Skip to main content
Log in

General and refined Montgomery Lemmata

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Montgomery’s Lemma on the torus \(\mathbb {T}^d\) states that a sum of N Dirac masses cannot be orthogonal to many low-frequency trigonometric functions in a quantified way. We provide an extension to general manifolds that also allows for positive weights: let (Mg) be a smooth compact d-dimensional manifold without boundary, let \((\phi _k)_{k=0}^{\infty }\) denote the Laplacian eigenfunctions, let \(\left\{ x_1, \dots , x_N\right\} \subset M\) be a set of points and \(\left\{ a_1, \dots , a_N\right\} \subset \mathbb {R}_{\ge 0}\) be a sequence of nonnegative weights. Then, for all \(X \ge 0\),

$$\begin{aligned} \sum _{k=0}^{X}{ \left| \sum _{n=1}^{N}{ a_n \phi _k(x_n)} \right| ^2} \gtrsim _{(M,g)} \left( \sum _{i=1}^{N}{a_i^2} \right) \frac{ X}{(\log {X})^{\frac{d}{2}}}. \end{aligned}$$

This result is sharp up to the logarithmic factor. Furthermore, we prove a refined spherical version of Montgomery’s Lemma, and provide applications to estimates of discrepancy and discrete energies of N points on the sphere \(\mathbb {S}^{d}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. US Government Printing Office, Washington (1964)

    MATH  Google Scholar 

  2. Ahrens, C., Beylkin, G.: Rotationally invariant quadratures for the sphere. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2110), 3103–3125 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, J.: Some upper bounds in the theory of irregularities of distribution. Acta Arith. 43, 115–130 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, J.: Sums of distances between points on a sphere-an application of the theory of irregularities of distribution to discrete geometry. Mathematika 31(1), 33–41 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J.: Irregularities of distribution I. Acta Math. 159, 1–49 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bilyk, D., Dai, F.: Geodesic distance Riesz energy on the sphere (2016). arXiv:1612.08442

  8. Bilyk, D., Dai, F., Matzke, R.: Stolarsky princuple and energy optimization on the sphere. Constr. Approx. 48, 31–60 (2018). https://doi.org/10.1007/s00365-017-9412-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Bilyk, D., Lacey, M.: One bit sensing, discrepancy and Stolarsky principle. Mat. Sbornik. 208, 744 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cassels, J.W.S.: On the sum of complex numbers. Acta Math. Hungar. 7, 283–289 (1957)

    Article  MathSciNet  Google Scholar 

  11. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York (2013)

    Google Scholar 

  12. Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 88, 341–370 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Kogbetliantz, E.: Recherches sur la sommabilité des sériesultra-sphériques par la méthode des moyennes arithmetiques. J. Math. Pures Appl. 3, 107–188 (1924)

    MATH  Google Scholar 

  14. Lu J., Steinerberger, S.: Riesz Energy on the Torus: Regularity of Minimizers (2017). arXiv:1710.08010

  15. Montgomery H.L.: The pair correlation of zeros of the zeta function. In: Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 181–193. Amer. Math. Soc., Providence, R.I. (1973)

  16. Montgomery, H.: Irregularities of Distribution by Means of Power Sums, Congress of Number Theory (Zarautz 1984), vol. 1989, pp. 11–27. Universidad del Paıs Vasco Bilbao, Lejona (1984)

  17. Montgomery, H.: Ten Lectures at the Interface of Harmonic Analysis and Number Theory. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  18. Reimer, M.: A short proof of a result of Kogbetliantz on the positivity of certain Cesáro means. Math. Z. 221(2), 189–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Siegel, C.L.: Uber Gitterpunkte in convexen Korpern und ein damit zusammenhangendes Extremalproblem. Acta Math. 65, 307–323 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  20. Steinerberger, S.: Exponential Sums and Riesz energies. J. Number Theory 182, 37–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Steinerberger, S.: Spectral Limitations of Quadrature Rules and Generalized Spherical Designs (2017). arXiv:1708.08736

  22. Stolarsky, K.B.: Sums of distances between points on a sphere. II. Proc. Am. Math. Soc. 41, 575–582 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szegö, G.: Orthogonal Polynomials, vol. 23, 4th edn. Am. Math. Soc. Colloq. Publ., Providence (1975)

Download references

Acknowledgements

Parts of this work were started at the Workshop “Discrepancy Theory and Quasi-Monte Carlo methods” held at the Erwin Schrödinger Institute, September 25–29, 2017. The authors gratefully acknowledge its hospitality. Bilyk’s work is supported by NSF Grant DMS 1665007. Dai was supported by NSERC Canada under the Grant RGPIN 04702 Dai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Communicated by Loukas Grafakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilyk, D., Dai, F. & Steinerberger, S. General and refined Montgomery Lemmata. Math. Ann. 373, 1283–1297 (2019). https://doi.org/10.1007/s00208-018-1738-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1738-0

Mathematics Subject Classification

Navigation