Skip to main content
Log in

Schrödinger equations with singular potentials: linear and nonlinear boundary value problems

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^N\) (\(N \ge 3\)) be a \(C^2\) bounded domain and \(F \subset \partial \Omega \) be a \(C^2\) submanifold with dimension \(0 \le k \le N-2\). Denote \(\delta _F=\mathrm {dist}\,(\cdot ,F)\), \(V=\delta _F^{-2}\) and \(C_H(V)\) the Hardy constant relative to V in \(\Omega \). We study positive solutions of equations (LE) \(-L_{\gamma V} u = 0\) and (NE) \(-L_{\gamma V} u+ f(u) = 0\) in \(\Omega \) where \(L_{\gamma V}=\Delta + \gamma V\), \(\gamma < C_H(V)\) and \(f \in C(\mathbb {R})\) is an odd, monotone increasing function. We extend the notion of normalized boundary trace introduced in Marcus and Nguyen (Ann Inst H. Poincaré (C) Non Linear Anal 34:69–88, 2015) and employ it to investigate the linear equation (LE). Using these results we obtain properties of moderate solutions of (NE). Finally we determine a criterion for subcriticality of points on \(\partial {\Omega }\) relative to f and study b.v.p. for (NE). In particular we establish existence and stability results when the data is concentrated on the set of subcritical points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Theorié du potentiel sur les graphes et les variétés, In: Ecole d’été de Probablités de Saint-Flour XVIII-1988, Springer Lecture Notes in Math., vol. 1427, pp. 1–112 (1990)

  2. Ancona, A.: Negatively curved manifolds, elliptic operators and the Martin boundary. Ann. Math, Second Ser. 125, 495–536 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ancona, A.: First eigenvalues and comparison of Greens functions for elliptic operators on manifolds or domains. J. d’Analyse Mathématique 72, 45–92 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandle, C., Moroz, V., Reichel, W.: Boundary blowup type sub-solutions to semilinear elliptic equations with Hardy potential. J. Lond. Math. Soc. 2, 503–523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H., Marcus, M.: Hardy inequalities revisited. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 25, 217–237 (1997)

  6. Davies, E.B.: A review of Hardy inequalities. The Mazya anniversary collection, Vol. 2 (Rostock, 1998), pp. 55–67, Oper. Theory Adv. Appl., 110. Birkhäuser, Basel (1999)

  7. Dávila, J., Dupaigne, L.: Hardy-type inequalities. J. Eur. Math. Soc. 6, 335–365 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devyver, B., Fraas, M., Pinchover, Y.: Optimal Hardy weight for second-order elliptic operator: an answer to a problem of agmon. J. Funct. Anal. 266, 4422–4489 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devyver, B., Pinchover, Y.: Optimal Lp Hardy-type inequalities. Ann. Inst. H. Poincare. Anal. Non Linéaire 33, 93118 (2016)

    MATH  Google Scholar 

  10. Fall, M.M.: On the Hardy-Poincaré inequality with boundary singularities. Commun. Contemp. Math. 14, 1250019 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fall, M.M., Mahmoudi, F.: Weighted Hardy inequality with higher dimensional singularity on the boundary. Calc. Var. PDEs 50, 779–798 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Filippas, S., Moschini, L., Tertikas, A.: Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains. Commun. Math. Phys. 273, 237–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gkikas, K.T., Véron, L.: Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials. Nonlinear Anal. 121, 469–540 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marcus, M.: Estimates of Green and Martin kernels for Schrödinger operators with singular potential in Lipschitz domains. arXiv:1801.09491

  15. Marcus, M., Mizel, V.J., Pinchover, Y.: On the best constant for Hardys inequality in \(\mathbb{R}^N\). Trans. Am. Math. Soc. 350, 3237–3255 (1998)

    Article  MATH  Google Scholar 

  16. Marcus, M., Moroz, V.: Moderate solutions of semilinear elliptic equations with Hardy potential under minimal restrictions on the potential. Sc. Norm. Sup. Pisa. arXiv:1603.09265 (to appear)

  17. Marcus, M., Nguyen, P.-T.: Moderate solutions of semilinear elliptic equations with Hardy potential. Ann. Inst. H. Poincaré (C) Non Linear Anal. 34, 69–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marcus, M., Shafrir, I.: An eigenvalue problem related to Hardys Lp inequality. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 29, 581–604 (2000)

  19. Marcus, M., Véron, L.: Nonlinear second order elliptic equations involving measures, De Gruyter series in nonlinear analysis and applications 21. De Gruyter, Berlin (2014)

    Google Scholar 

  20. Y. Pinchover, Personal communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Marcus.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcus, M., Nguyen, PT. Schrödinger equations with singular potentials: linear and nonlinear boundary value problems. Math. Ann. 374, 361–394 (2019). https://doi.org/10.1007/s00208-018-1734-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1734-4

Mathematics Subject Classification

Navigation