Skip to main content
Log in

Convergence of the Allen–Cahn equation with a zero Neumann boundary condition on non-convex domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study a singular limit problem of the Allen–Cahn equation with a homogeneous Neumann boundary condition on non-convex domains with smooth boundaries under suitable assumptions for initial data. The main result is the convergence of the time parametrized family of the diffused surface energy to Brakke’s mean curvature flow with a generalized right angle condition on the boundary of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  3. Barles, G., Da Lio, F.: A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions. Interface Free Bound. 5, 239–274 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Barles, G., Souganidis, P.E.: A new approach to front propagation problems: theory and applications. Arch. Ration. Mech. Anal. 141, 237–296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brakke, K.A.: The Motion of a Surface by its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  6. Casten, R.G., Holland, C.J.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edelen, N.: The free-boundary Brakke flow. J. Reine Angew. Math. https://doi.org/10.1515/crelle-2017-0053

  8. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, Revised edn. Boca Raton, CRC Press (2015)

    MATH  Google Scholar 

  9. Giga, Y., Sato, M.-H.: Neumann problem for singular degenerate parabolic equations. Differ. Integr. Equ. 6, 1217–1230 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order, 2nd edn. Springer, New York (1983)

    Book  MATH  Google Scholar 

  11. Grüter, M., Jost, J.: Allard type regularity for varifolds with free boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 129–169 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38, 417–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kagaya, T., Tonegawa, Y.: A contact angle condition for varifolds. Hiroshima Math. J. 47, 139–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kagaya, T., Tonegawa, Y.: A singular perturbation limit of diffused interface energy with a fixed contact angle condition. Indiana Univ. Math. J. arXiv:1609.00191

  15. Kasai, K., Tonegawa, Y.: A general regularity theory for weak mean curvature flow. Calc. Var. Partial Differ. Equ. 50, 1–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katsoulakis, M., Kossioris, G.T., Reitich, F.: Generalized motion by mean curvature with Neumann conditions and the Allen–Cahn model for phase transitions. J. Geom. Anal. 5, 255–279 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1967)

    Google Scholar 

  18. Liu, C., Sato, N., Tonegawa, Y.: On the existence of mean curvature flow with transport term. Interfaces Free Bound. 12, 251–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mantegazza, C.: Curvature varifolds with boundary. J. Differ. Geom. 43, 807–843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mizuno, M., Tonegawa, Y.: Convergence of the Allen–Cahn equation with Neumann boundary conditions. SIAM J. Math. Anal. 47, 1906–1932 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sato, M.-H.: Interface evolution with Neumann boundary condition. Adv. Math. Sci. Appl. 4, 249–264 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, p 3 (1983)

  24. Takasao, K., Tonegawa, Y.: Existence and regularity of mean curvature flow with transport term in higher dimensions. Math. Ann. 364(3–4), 857–935 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tonegawa, Y.: Domain dependent monotonicity formula for a singular perturbation problem. Indiana Univ. Math. J. 52, 69–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tonegawa, Y.: Integrality of varifolds in the singular limit of reaction-diffusion equations. Hiroshima Math. J. 33, 323–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tonegawa, Y.: A second derivative Hölder estimate for weak mean curvature flow. Adv. Calc. Var. 7, 91–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. White, B.: A local regularity theorem for mean curvature flow. Ann. Math. 161, 1487–1519 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kagaya.

Additional information

Communicated by Y. Giga.

The author is partially supported by JSPS Research Fellow Grant number 16J00547.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagaya, T. Convergence of the Allen–Cahn equation with a zero Neumann boundary condition on non-convex domains. Math. Ann. 373, 1485–1528 (2019). https://doi.org/10.1007/s00208-018-1720-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1720-x

Mathematics Subject Classification

Navigation