Skip to main content
Log in

Deletion theorem and combinatorics of hyperplane arrangements

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give a sufficient and necessary condition for the deletion theorem in terms of characteristic polynomials. As a corollary, we prove that whether a free arrangement has a free filtration is also combinatorial. The proof is based on the result about a minimal set of generators of a logarithmic derivation module of a multiarrangement which satisfies the \(b_2\)-equality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, T.: Roots of characteristic polynomials and and intersection points of line arrangements. J. Singularities 8, 100–117 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Abe, T.: Divisionally free arrangements of hyperplanes. Invent. Math. 204(1), 317–346 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abe, T.: Restrictions of Free Arrangements and the Division Theorem. In: Callegaro, F., Carnovale, G., Caselli, F., De Concini, C., De Sole, A. (eds.) Perspectives in Lie Theory. Springer INdAM Series, vol. 19, pp. 389–401. Springer, Cham (2017)

  4. Abe, T., Terao, H.: Free filtrations of affine Weyl arrangements and the ideal-Shi arrangements. J. Alg. Combin. 43(1), 33–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abe, T., Terao, H., Wakefield, M.: The characteristic polynomial of a multiarrangement. Adv. in Math. 215, 825–838 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abe, T., Terao, H., Wakefield, M.: The Euler multiplicity and addition-deletion theorems for multiarrangements. J. London Math. Soc. 77(2), 335–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abe, T., Yoshinaga, M.: Free arrangements and coefficients of characteristic polynomials. Math. Z. 275(3), 911–919 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dimca, A., Sticlaru, G.: Nearly free divisors and rational cuspidal curves. arXiv:1505.00666

  9. Dimca, A., Sticlaru, G.: Free and nearly free surfaces in \(\mathbf{P}^3\), to appear in Asian J. Math., arXiv:1507.03450

  10. Edelman, P.H., Reiner, V.: A counterexample to Orlik’s conjecture. Proc. Amer. Math. Soc. 118, 927–929 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(2), 167–189 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Orlik, P., Terao, H.: Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, p. 300. Springer, Berlin (1992)

    Google Scholar 

  13. Rybnikov, G.L.: On the fundamental group of the complement of a complex hyperplane arrangement. Funktsional. Anal. i Prilozhen. 45(2), 71–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo 27, 265–291 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Terao, H.: Arrangements of hyperplanes and their freeness I. II. J. Fac. Sci. Univ. Tokyo 27, 293–320 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Terao, H.: Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula. Invent. math. 63, 159–179 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yoshinaga, M.: On the freeness of 3-arrangements. Bull. London Math. Soc. 37(1), 126–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yoshinaga, M.: Freeness of hyperplane arrangements and related topics. Anna. de la Faculte des Sci. de Toulouse 23(2), 483–512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ziegler, G. M.: Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986). In: Contemporary Mathematics, vol. 90, pp. 345–359. American Mathematical Society, Providence, RI (1989)

Download references

Acknowledgements

The author is grateful to the anonymous referees for several comments and suggestions to this article. The author is partially supported by JSPS Grant-in-Aid for Scientific Research (B) JP16H03924, and Grant-in-Aid for Exploratory Research JP16K13744. We are grateful to Michael DiPasquale for informing an example in Remark 3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuro Abe.

Additional information

Communicated by Thomas Schick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T. Deletion theorem and combinatorics of hyperplane arrangements. Math. Ann. 373, 581–595 (2019). https://doi.org/10.1007/s00208-018-1713-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1713-9

Mathematics Subject Classification

Navigation