Skip to main content
Log in

Second Chern class of Fano manifolds and anti-canonical geometry

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let X be a Fano manifold of Picard number one. We establish a lower bound for the second Chern class of X in terms of its index and degree. As an application, if Y is a n-dimensional Fano manifold with \(-K_Y=(n-3)H\) for some ample divisor H, we prove that \(h^0(Y,H)\ge n-2\). Moreover, we show that the rational map defined by \(\vert mH\vert \) is birational for \(m\ge 5\), and the linear system \(\vert mH\vert \) is basepoint free for \(m\ge 7\). As a by-product, the pluri-anti-canonical systems of singular weak Fano varieties of dimension at most 4 are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambro, F.: Ladders on Fano varieties. J. Math. Sci. 94(1), 1126–1135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ando, T.: Pluricanonical systems of algebraic varieties of general type of dimension \(\le 5\). In: Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10., pp. 1–10. North-Holland, Amsterdam (1987)

  3. Araujo, C., Druel, S.: On Fano foliations. Adv. Math. 238, 70–118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araujo, C., Druel, S., Kovács, S.J.: Cohomological characterizations of projective spaces and hyperquadrics. Invent. Math. 174(2), 233–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballico, E., Wiśniewski, J.A.: On Bǎnicǎ sheaves and Fano manifolds. Compositio Math. 102(3), 313–335 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Birkar, C.: Anti-pluricanonical systems on Fano varieties. arXiv:1603.05765 (2016)

  7. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, M.: On anti-pluricanonical systems of \({\mathbb{Q}}\)-Fano 3-folds. Sci. China Math. 54(8), 1547–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, M., Jiang, C.: On the anti-canonical geometry of \({\mathbb{Q}}\)-Fano threefolds. J. Differ. Geom. 104(1), 59–109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics and stability. Int. Math. Res. Not. 8, 2119–2125 (2014)

    Article  MATH  Google Scholar 

  11. Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Am. Math. Soc. 28(1), 235–278 (2015)

    Article  MATH  Google Scholar 

  12. Floris, E.: Fundamental divisors on Fano varieties of index \(n-3\). Geom. Dedicata 162, 1–7 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukuda, S.: A note on T. Ando’s paper “Pluricanonical systems of algebraic varieties of general type of dimension \(\le 5\)”. Tokyo J. Math. 14(2), 479–487 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heuberger, L.: Deux points de vue sur les variétés de Fano: géométrie du diviseur anticanonique et classification des surfaces à singularités 1/3 (1, 1). PhD thesis, Université Pierre et Marie Curie, Paris, France (2016)

  15. Höring, A., Voisin, C.: Anticanonical divisors and curve classes on Fano manifolds. Pure Appl. Math. Q. 7(4), 1371–1393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hwang, J.-M.: Stability of tangent bundles of low-dimensional Fano manifolds with Picard number \(1\). Math. Ann. 312(4), 599–606 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hwang, J.-M.: Geometry of minimal rational curves on Fano manifolds. In: School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes, vol. 6. Abdus Salam Int. Cent. Theoret. Phys., Trieste, pp. 335–393 (2001)

  18. Jahnke, P., Radloff, I.: Gorenstein Fano threefolds with base points in the anticanonical system. Compos. Math. 142(2), 422–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, C.: On birational geometry of minimal threefolds with numerically trivial canonical divisors. Math. Ann. 365(1–2), 49–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kawamata, Y.: On effective non-vanishing and base-point-freeness. Asian J. Math. 4(1), 173–181 . Kodaira’s issue (2000)

  21. Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kollár, J.: Effective base point freeness. Math. Ann. 296(4), 595–605 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kollár, J.: Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 32. Springer, Berlin (1996)

  24. Kollár, J., Miyaoka, Y., Mori, S., Takagi, H.: Boundedness of canonical \({\bf Q}\)-Fano 3-folds. Proc. Japan Acad. Ser. A Math. Sci. 76(5), 73–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kollár, J., Mori, S.: Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

  26. Langer, A.: Semistable sheaves in positive characteristic. Ann. Math.(2) 159(1), 251–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J.: Characterization of projective spaces and \({\mathbb{P}}^{r}\)-bundles as ample divisors. Nagoya Math. J. (to appear). https://doi.org/10.1017/nmj.2017.31

  28. Mella, M.: Existence of good divisors on Mukai varieties. J. Algebraic Geom. 8(2), 197–206 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Oguiso, K.: On polarized Calabi–Yau \(3\)-folds. J. Fac. Sci. Univ. Tokyo Sect. IA Math 38(2), 395–429 (1991)

    MathSciNet  MATH  Google Scholar 

  30. Oguiso, K., Peternell, T.: On polarized canonical Calabi–Yau threefolds. Math. Ann. 301(2), 237–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ottaviani, G.: Spinor bundles on quadrics. Trans. Am. Math. Soc. 307(1), 301–316 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peternell, T.: Varieties with generically nef tangent bundles. J. Eur. Math. Soc. 14(2), 571–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peternell, T., Wiśniewski, J.A.: On stability of tangent bundles of Fano manifolds with \(b_2=1\). J. Algebraic Geom. 4(2), 363–384 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Przhiyalkovski, V.V., Cheltsov, I.A., Shramov, C.A.: Hyperelliptic and trigonal Fano threefolds. Izv. Ross. Akad. Nauk Ser. Mat. 69(2), 145–204 (2005)

    Article  MathSciNet  Google Scholar 

  35. Reid, M.: Bogomolov’s theorem \(c_1^2\le 4c_2\). In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 623–642 (1977)

  36. Reider, I.: Vector bundles of rank \(2\) and linear systems on algebraic surfaces. Ann. Math. 127(2), 309–316 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, G.: K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68(7), 1085–1156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wiśniewski, J.A.: On Fano manifolds of large index. Manus. Math. 70(2), 145–152 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wiśniewski, J. A.: A report on Fano manifolds of middle index and \(b_2\ge 2\). In: Projective geometry with applications (Dekker, New York, 1994), Lecture Notes in Pure and Appl. Math., vol. 166, pp. 19–26 (1994)

  40. Wiśniewski, J.A.: Fano manifolds and quadric bundles. Math. Z. 214(2), 261–271 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I heartly thank my advisor Andreas Höring for valuable discussions, suggestions and for his careful proofreading of the rather awkward draft of this paper. I want to thank Chen Jiang and Stéphane Druel for helpful communications and comments. I also would like to thank the anonymous reviewer for pointing out several inacuracies in previous versions and for his valuable comments and suggestions to improve the explanation of the paper. This paper was written while I stayed in Institut de Recherche Mathématique de Rennes (IRMAR) and I would like to thank the institution for the hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

Communicated by Ngaiming Mok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Second Chern class of Fano manifolds and anti-canonical geometry. Math. Ann. 375, 655–669 (2019). https://doi.org/10.1007/s00208-018-1702-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1702-z

Mathematics Subject Classification

Navigation