Skip to main content
Log in

Affine threefolds admitting \(G_a\)-actions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The structures of affine varieties of dimension greater than two can be explored with the help of fibrations by the affine line or plane and quotient morphisms by \(G_a\)-actions. We consider \(G_a\)-actions on affine threefolds and discuss the structure and the singularities of the quotient surface as well as the singular fibers of the quotient morphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Mumford [27] proved that if a small nice punctured neighborhood of a normal surface singular point Q is simply connected, then Q is a smooth point of the surface. This implies by an easy covering space argument that if \(\varphi : ({\mathbb C}^2,O) \rightarrow (S,Q)\) is a finite surjective complex analytic map of germs with S normal, then the fundamental group G of the germ \(S{\setminus }\{Q\}\) is a finite group and the germ (SQ) is isomorphic to the germ \(({\mathbb C}^2,O)/G\), where G acts freely on the germ \(({\mathbb C}^2,O)\). This observation applied to a finite analytic map of the germs \(f : (U,P) \rightarrow (Y,Q)\) implies that Q is a quotient singular point, where P is a smooth point of the fiber F, U is a transversal section of F at P and \(Q=f(P)\). See Brieskorn [4, Satz 2.8].

  2. To be more accurate, we have to consider the case where the surfaces \(Y_p\) and \(Y_{p'}\) contain separately disjoint fiber components of the same singular (degenerate) fiber of \(q_1\) resulting the non-empty intersection of the images \(B_p\) and \(B_{p'}\) of \(Y_p\) and \(Y_{p'}\) although \(Y_p\cap Y_{p'}=\emptyset \). By [15, Theorem 1.11], \(q_1\) has equi-dimension one since X is factorial. Since one singular fiber contains finitely many irreducible components, this situation does not occur if we take general points \(p, p'\) in Z. Namely, if \(B_p\cap B_{p'}\ne \emptyset \), then \(Y_p\cap Y_{p'} \ne \emptyset \) and hence \(G_2P\cap G_2P' \ne \emptyset \) for \(P\in C_p\) and \(P'\in C_{p'}\).

  3. A normal algebraic surface with at worst quotient singularities is called a logarithmeic surface.

  4. Let \((V,D+\Gamma )\) be a pair of a smooth projective surface and an effective reduced divisor \(D+\Gamma \) with simple normal crossings. Assume that \(D\cap \Gamma =\emptyset \) and \(\Gamma \) is the exceptional locus of the minimal resolution of a rational double point. Hence each irreducible component of \(\Gamma \) is a smooth rational curve with self-intersection \(-2\), and the intersection form of \(\Gamma \) is negative definite. If \(|n(K_V+D+\Gamma )| \ne \emptyset \) for \(n > 0\), then \(n\Gamma \) is contained in the fixed part. In fact, let \(\Gamma _1\) be the maximal effective divisor such that \(\Gamma _1\) is supported by the irreducible components of \(\Gamma \) and \(\Gamma _1\) is contained in the fixed part of \(|n(K_V+D+\Gamma )|\). Let A be a general member of \(|n(K_V+D+\Gamma )|\). Then \(A-\Gamma _1\) has no component of \(\Gamma \). Suppose that \(n\Gamma > \Gamma _1\), and write \(n\Gamma =\Gamma _1+\Gamma _2\). Then \((A-\Gamma _1)\cdot \Gamma _2 \ge 0\). Meanwhile, \((A-\Gamma _1)\cdot \Gamma _2=(n(K_V+D+\Gamma )-\Gamma _1)\cdot \Gamma _2=(n(K_V+D)+\Gamma _2)\cdot \Gamma _2=\Gamma _2^2 < 0\), which is a contradiction. So, \(\Gamma _1 \ge n\Gamma \). This implies that \(\overline{\kappa }(V{\setminus }(D+\Gamma ))=\overline{\kappa }(V{\setminus } D)\). The case of non-minimal resolution is reduced to the case of minimal resolution.

  5. If \(n=4\), we assume that Y exists, i.e., the ring of invariants is an affine domain over k. If \(n =2, 3\), the ring of invariants is an affine domain over k by Zariski’s Finiteness Theorem (see [11, p.147]).

  6. see Remark 4.5 below.

  7. Suppose that \(\Delta _{(F,G)}=AD\) for a derivation D. There exists then an element \(\xi \in k[x,y,z]\) such that \(\Delta _{(F,G)}(\xi )\) is a nonzero element of \(\mathrm{Ker}\,\Delta _{(F,G)}\). Then a factor A of an element of \(\mathrm{Ker}\,\Delta _{(F,G)}\) is also in the same kernel.

References

  1. Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193–259 (1962)

    Article  MATH  Google Scholar 

  2. Bandman, T., Makar-Limanov, L.: Cylinders over affine surfaces. Jpn. J. Math. (N.S.) 26(1), 207–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnet, P.: Surjectivity of quotient maps for algebraic \((\mathbb{C},+)\)-actions and polynomial maps with contractible fibers. Transform. Groups 7(1), 3–14 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math. 4, 336–358 (1967/1968)

  5. Crachiola, A.J., Makar-Limanov, L.G.: An algebraic proof of a cancellation theorem for surfaces. J. Algebra 320(8), 3113–3119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daigle, D.: On some properties of locally nilpotent derivations. J. Pure Appl. Algebra 114, 221–230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daigle, D., Russell, P.: Affine rulings of normal rational surfaces. Osaka J. Math. 38(1), 37–100 (2001)

    MathSciNet  MATH  Google Scholar 

  8. I. Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981), 34–71. In: Lecture Notes in Math., vol. 956. Springer, Berlin (1982)

  9. Dubouloz, A.: The cylinder over the Koras–Russell cubic threefold has a trivial Makar-Limanov invariant. Transform. Groups 14(3), 531–539 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dutta, A.K.: On \({\mathbb{A}}^1\)-bundles of affine morphisms. J. Math. Kyoto Univ. 35(3), 377–385 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freudenburg, G.: Algebraic theory of locally nilpotent derivations. In: Encyclopaedia of Mathematical Sciences, vol. 136, Invariant Theory and Algebraic Transformation Groups, VII. Springer, Berlin (2006)

  12. Gurjar, R.V., Koras, M., Miyanishi, M., Russell, P.: Affine normal surfaces with simply-connected smooth locus. Math. Ann. 353(1), 127–144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurjar, R.V., Koras, M., Miyanishi, M., Russell, P.: A homology plane of general type can have at most a cyclic quotient singularity. J. Algebraic Geom. 23, 1–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurjar, R.V., Koras, M., Masuda, K., Miyanishi, M., Russell, P.: \({\mathbb{A}}^1_*\)-Fibrations on affine threefolds. In: Masuda, K., et al. (eds.) Affine Algebraic Geometry, pp. 62–102. World Scientific, Singapore (2013)

    Chapter  Google Scholar 

  15. Gurjar, R.V., Masuda, K., Miyanishi, M.: \({\mathbb{A}}^1\)-fibrations on affine threefolds. J. Pure Appl. Algebra 216(2), 296–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  17. Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. 88, 403–450 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaliman, S., Saveliev, N.: \({\mathbb{C}}^+\)-Actions on contractible threefolds. Mich. Math. J. 52(3), 619–625 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaliman, S., Zaidenberg, M.: Affine modifications and affine hypersurfaces with a very transitive automorphism group. Transform. Groups 4(1), 53–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kollar, J.: Rational Curves on Algebraic Varieties. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band, vol. 32. Springer (1996)

  21. Makar-Limanov, L.: On the group of automorphisms of a surface \(x^ny=P(z)\). Isr. J. Math. 121, 113–123 (2001)

    Article  MATH  Google Scholar 

  22. Miyanishi, M.: Singularities of normal affine surfaces containing cylinderlike open sets. J. Algebra 68(2), 268–275 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyanishi, M.: Normal affine subalgebras of a polynomial ring. In: Algebraic and Topological Theoreies. To the Memory of Dr. Takehiko Miyata, Kinokuniya, Tokyo, pp. 37–51 (1985)

  24. Miyanishi, M., Sugie, T.: Homology planes with quotient singularities. J. Math. Kyoto Univ. 31(3), 755–788 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miyanishi, M.: Open algebraic surfaces. In: CRM Monograph Series, vol. 12. American Mathematical Society, Providence (2001)

  26. Mori, S.: Graded factorial domains. Jpn. J. Math. (N.S.) 3(2), 223–238 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. 9, 5–22 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nagata, M.: Local rings, Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York-London (1962)

    Google Scholar 

  29. Nori, M.V.: Zariski’s conjecture and related problems. Ann. Sci. Ecole Norm. Sup. (4) 16(2), 305–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Palka, K.: Exceptional singular \({\mathbb{Q}}\)-homology planes. Ann. Inst. Fourier (Grenoble) 61(2), 745–774 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helvetici 28, 17–86 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkelmann, J.: On free holomorphic \({\mathbb{C}}\)-actions on \({\mathbb{C}}^n\) and homogeneous Stein manifolds. Math. Ann. 286, 593–612 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiao, G.: \(\pi _1\) of elliptic and hyperelliptic surfaces. Internat. J. Math. 2, 599–615 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Gurjar.

Additional information

Communicated by Ngaiming Mok.

M. Koras passed away on September 15, 2017. The first author was supported by Dr. Raja Ramanna Fellowship of the Department of Atomic Energy of India at, the Indian Institute of Technology, Bombay. The second author was supported by the Polish National Center of Science, Grant No. 2013/11/B/ST1/02977. The third and fourth authors were respectively supported by Grant-in-Aid for Scientific Research (C), No. 15K04831 and (B), No. 24340006, JSPS. The fifth author was supported by NSERC, Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurjar, R.V., Koras, M., Masuda, K. et al. Affine threefolds admitting \(G_a\)-actions. Math. Ann. 373, 1211–1236 (2019). https://doi.org/10.1007/s00208-017-1622-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1622-3

Mathematics Subject Classification

Navigation