Skip to main content
Log in

Min–max formulas and other properties of certain classes of nonconvex effective Hamiltonians

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper is the first attempt to systematically study properties of the effective Hamiltonian \(\overline{H}\) arising in the periodic homogenization of some coercive but nonconvex Hamilton–Jacobi equations. Firstly, we introduce a new and robust decomposition method to obtain min–max formulas for a class of nonconvex \(\overline{H}\). Secondly, we analytically and numerically investigate other related interesting phenomena, such as “quasi-convexification” and breakdown of symmetry, of \(\overline{H}\) from other typical nonconvex Hamiltonians. Finally, in the appendix, we show that our new method and those a priori formulas from the periodic setting can be used to obtain stochastic homogenization for the same class of nonconvex Hamilton–Jacobi equations. Some conjectures and problems are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Homogenization of Hamilton–Jacobi equations: numerical methods. Math. Models Methods Appl. Sci. 18(7), 1115–1143 (2008)

    Article  MathSciNet  Google Scholar 

  2. Armstrong, S., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions. J. Eur. Math. Soc. (to appear)

  3. Armstrong, S.N., Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations in unbounded environments. J. Math. Pures Appl. (9) 97(5), 460–504 (2012)

    Article  MathSciNet  Google Scholar 

  4. Armstrong, S.N., Souganidis, P.E.: Stochastic homogenization of level-set convex Hamilton–Jacobi equations. Int. Math. Res. Not. 2013, 3420–3449 (2013)

    Article  MathSciNet  Google Scholar 

  5. Armstrong, S.N., Tran, H.V.: Stochastic homogenization of viscous Hamilton–Jacobi equations and applications. Anal. PDE 7–8, 1969–2007 (2014)

    Article  MathSciNet  Google Scholar 

  6. Armstrong, S.N., Tran, H.V., Yu, Y.: Stochastic homogenization of a nonconvex Hamilton–Jacobi equation. Calc. Var. PDE 54(2), 1507–1524 (2015)

    Article  MathSciNet  Google Scholar 

  7. Armstrong, S.N., Tran, H.V., Yu, Y.: Stochastic homogenization of nonconvex Hamilton–Jacobi equations in one space dimension. J. Differ. Equ. 261, 2702–2737 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bangert, V.: Mather sets for twist maps and geodesics on tori. In: Dynamics reported, vol. 1, pp. 1–56

    Google Scholar 

  9. Bangert, V.: Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. PDE 2(1), 49–63 (1994)

    Article  MathSciNet  Google Scholar 

  10. Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15(12), 1713–1742 (1990)

    Article  MathSciNet  Google Scholar 

  11. Cagnetti, F., Gomes, D., Tran, H.V.: Aubry–Mather measures in the non convex setting. SIAM J. Math. Anal. 43, 2601–2629 (2011)

    Article  MathSciNet  Google Scholar 

  12. Concordel, M.C.: Periodic homogenization of Hamilton–Jacobi equations: additive eigenvalues and variational formula. Indiana Univ. Math. J. 45(4), 1095–1117 (1996)

    Article  MathSciNet  Google Scholar 

  13. Concordel, M.C.: Periodic homogenisation of Hamilton–Jacobi equations. II. Eikonal equations. Proc. R. Soc. Edinb. Sect. A 127(4), 665–689 (1997)

    Article  MathSciNet  Google Scholar 

  14. Contreras, G., Iturriaga, R., Paternain, G.P., Paternain, M.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8, 788–809 (1998)

    Article  MathSciNet  Google Scholar 

  15. Davini, A., Kosygina, E.: Homogenization of viscous Hamilton–Jacobi equations: a remark and an application. Calc. Var. 56, 95 (2017)

  16. Davini, A., Siconolfi, A.: Exact and approximate correctors for stochastic Hamiltonians: the \(1\)-dimensional case. Math. Ann. 345(4), 749–782 (2009)

    Article  MathSciNet  Google Scholar 

  17. E, W.: Aubry–Mather theory and periodic solutions of the forced Burgers equation. Commun. Pure Appl. Math. 52(7), 811–828 (1999)

    Article  MathSciNet  Google Scholar 

  18. Evans, L.C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MathSciNet  Google Scholar 

  19. Falcone, M., Rorro, M.: On a variational approximation of the effective Hamiltonian. In: Numerical Mathematics and Advanced Applications, pp. 719–726. Springer, Berlin (2008)

  20. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics

  21. Feldman, W., Souganidis, P.E.: Homogenization and non-homogenization of certain nonconvex Hamilton–Jacobi equations. J. Math. Pures Appl. (to appear). arXiv:1609.09410 [math.AP]

  22. Gao, H.: Random homogenization of coercive Hamilton–Jacobi equations in 1d. Calc. Var. Partial Differ. Equ. 55, 30 (2016)

    Article  MathSciNet  Google Scholar 

  23. Gomes, D.A.: A stochastic analogue of Aubry–Mather theory. Nonlinearity 15, 581–603 (2002)

    Article  MathSciNet  Google Scholar 

  24. Gomes, D.A., Mitake, H., Tran, H.V.: The selection problem for discounted Hamilton–Jacobi equations: some nonconvex cases. J. Math. Soc. Japan. (to appear). arXiv:1605.07532 [math.AP]

  25. Gomes, D.A., Oberman, A.M.: Computing the effective Hamiltonian using a variational formula. SIAM J. Control Optim. 43, 792–812 (2004)

    Article  MathSciNet  Google Scholar 

  26. Jing, W., Tran, H.V., Yu, Y.: Inverse problems, non-roundness and flat pieces of the effective burning velocity from an inviscid quadratic Hamilton–Jacobi model Nonlinearity 30, 1853–1875 (2017). arXiv:1602.04728 [math.AP]

    Article  MathSciNet  Google Scholar 

  27. Kosygina, E., Rezakhanlou, F., Varadhan, S.R.S.: Stochastic homogenization of Hamilton–Jacobi–Bellman equations. Commun. Pure Appl. Math. 59(10), 1489–1521 (2006)

    Article  MathSciNet  Google Scholar 

  28. Kosygina, E., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi–Bellman equations with respect to time-space shifts in a stationary ergodic medium. Commun. Pure Appl. Math. 61(6), 816–847 (2008)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equations. Unpublished work (1987)

  30. Lions, P.-L., Souganidis, P.E.: Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media. Commun. Partial Differ. Equ. 30(1–3), 335–375 (2005)

    Article  MathSciNet  Google Scholar 

  31. Lions, P.-L., Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi and “viscous” Hamilton–Jacobi equations with convex nonlinearities-revisited. Commun. Math. Sci. 8(2), 627–637 (2010)

    Article  MathSciNet  Google Scholar 

  32. Luo, S., Tran, H.V., Yu, Y.: Some inverse problems in periodic homogenization of Hamilton–Jacobi equations. Arch. Ration. Mech. Anal. 221(3), 1585–1617 (2016)

    Article  MathSciNet  Google Scholar 

  33. Luo, S., Yu, Y., Zhao, H.: A new approximation for effective Hamiltonians for homogenization of a class of Hamilton–Jacobi equations. Multiscale Model. Simul. 9(2), 711–734 (2011)

    Article  MathSciNet  Google Scholar 

  34. Mather, J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)

    Article  MathSciNet  Google Scholar 

  35. Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9(2), 273–310 (1996)

    Article  MathSciNet  Google Scholar 

  36. Nakayasu, A.: Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians. arXiv:1412.6735 [math.AP]

  37. Oberman, A.M., Takei, R., Vladimirsky, A.: Homogenization of metric Hamilton–Jacobi equations. Multiscale Model. Simul. 8, 269–295 (2009)

    Article  MathSciNet  Google Scholar 

  38. Qian, J.-L.: Two Approximations for Effective Hamiltonians Arising from Homogenization of Hamilton–Jacobi Equations, UCLA CAM Report 03-39, University of California, Los Angeles, CA (2003)

  39. Rezakhanlou, F., Tarver, J.E.: Homogenization for stochastic Hamilton–Jacobi equations. Arch. Ration. Mech. Anal. 151(4), 277–309 (2000)

    Article  MathSciNet  Google Scholar 

  40. Seeger, B.: Homogenization of pathwise Hamilton–Jacobi equations. J. Math. Pures Appl. (to appear). arXiv:1605.00168v3 [math.AP]

  41. Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi equations and some applications. Asymptot. Anal. 20(1), 1–11 (1999)

    MathSciNet  MATH  Google Scholar 

  42. Ziliotto, B.: Stochastic homogenization of nonconvex Hamilton–Jacobi equations: a counterexample. Commun. Pure Appl. Math. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung V. Tran.

Additional information

Communicated by Y. Giga.

The work of JQ is partially supported by NSF Grants 1522249 and 1614566, the work of HT is partially supported by NSF Grant DMS-1615944, the work of YY is partially supported by NSF CAREER Award #1151919.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Tran, H.V. & Yu, Y. Min–max formulas and other properties of certain classes of nonconvex effective Hamiltonians. Math. Ann. 372, 91–123 (2018). https://doi.org/10.1007/s00208-017-1601-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1601-8

Mathematics Subject Classification

Navigation