Skip to main content
Log in

Motivic zeta functions of degenerating Calabi–Yau varieties

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study motivic zeta functions of degenerating families of Calabi–Yau varieties. Our main result says that they satisfy an analog of Igusa’s monodromy conjecture if the family has a so-called Galois equivariant Kulikov model; we provide several classes of examples where this condition is verified. We also establish a close relation between the zeta function and the skeleton that appeared in Kontsevich and Soibelman’s non-archimedean interpretation of the SYZ conjecture in mirror symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper, J.: On the local quotient structure of Artin stacks. J. Pure Appl. Algebra 214(9), 1576–1591 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alper, J., Hall, J., Rydh, D.: A Luna étale slice theorem for algebraic stacks. (Preprint). arXiv:1504.06467

  3. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

    Article  MATH  Google Scholar 

  4. Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields. Volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1990)

    Google Scholar 

  5. Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math. 1993(78), 5–161 (1994)

    MATH  Google Scholar 

  6. Berkovich, V.: Complex analytic vanishing cycles for formal schemes. (2015). (Preprint). http://www.wisdom.weizmann.ac.il/~vova/FormIV_2015.pdf

  7. Bosch, S., Lütkebohmert, W.: Stable reduction and uniformization of abelian varieties. II. Invent. Math. 78(2), 257–297 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bosch, S., Lütkebohmert, W.: Degenerating abelian varieties. Topology 30(4), 653–698 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1990)

    Google Scholar 

  10. Bosch, S., Schlöter, K.: Néron models in the setting of formal and rigid geometry. Math. Ann. 301(2), 339–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bosch, S., Xarles, X.: Component groups of Néron models via rigid uniformization. Math. Ann. 306, 459–486 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bultot, E., Nicaise, J.: Computing motivic zeta functions on log smooth models. (Preprint). arXiv:1610.00742

  13. Chai, C.L.: Néron models for semiabelian varieties: congruence and change of base field. Asian J. Math. 4(4), 715–736 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Conrad, B., Lieblich, M., Olsson, M.: Nagata compactification for algebraic spaces. J. Inst. Math. Jussieu 11, 747–814 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conrad, B., Temkin, M.: Non-Archimedean analytification of algebraic spaces. J. Algebraic Geom. 18(4), 731–788 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crauder, B., Morrison, D.: Triple-point-free degenerations of surfaces with Kodaira number zero. In: Friedman, R., Morrison, D. (eds.) The Birational Geometry of Degenerations. Volume 29 of Progress in Mathematics, pp. 353–386. Birkhäuser, Basel (1983)

  17. Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics, Vol. I (Barcelona, 2000). Volume 201 of Progr. Math., Birkhäuser, Basel (2001)

  18. Edixhoven, B.: Néron models and tame ramification. Compos. Math. 81, 291–306 (1992)

    MATH  Google Scholar 

  19. Eriksson, D., Freixas, G., Montplet, i., Mourougane, C.: Singularities of metrics on Hodge bundles and their topological invariants. (Preprint). arXiv:1611.03017v1

  20. Gritsenko, V., Hulek, K., Sankaran, G.: Moduli spaces of K3 surfaces and holomorphic symplectic varieties. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli. Advanced Lect. in Math., vol. 1, pp. 459–526. International Press, Somerville (2013)

    Google Scholar 

  21. Grothendieck, A.: Revêtements étales et groupe fondamental. Séminaire de géométrie algébrique du BoisMarie 1960–61 (SGA 1). Updated and annotated reprint of the 1971 original. Vol. 3 of Documents Mathématiques (Paris). Société Mathématique de France, Paris (2003)

  22. Grothendieck, A.: Groupes de monodromie en géométrie algébrique. I. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I). Avec la collaboration de M. Raynaud et D.S. Rim. Volume 288 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1972)

  23. Halle, L.H., Nicaise, J.: The Néron component series of an abelian variety. Math. Ann. 348(3), 749–778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Halle, L.H., Nicaise, J.: Motivic zeta functions of abelian varieties, and the monodromy conjecture. Adv. Math. 227, 610–653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Halle, L.H., Nicaise, J.: Motivic zeta functions for degenerations of abelian varieties and Calabi–Yau varieties. In: Campillo, A., et al. (eds.) Recent Trends on Zeta Functions in Algebra and Geometry. Volume 566 of Contemporary Mathematics, pp. 233–259. American Mathematical Society, Providence (2012)

    Chapter  Google Scholar 

  26. Halle, L.H., Nicaise, J.: Néron Models and Base Change. Vol. 2156 of Lecture Notes in Mathematics. Springer, New York (2016)

    Book  Google Scholar 

  27. Hartmann A.: Equivariant motivic integration on formal schemes and the motivic zeta function. (Preprint). arXiv:1511.08656

  28. Hassett, B., Tschinkel, Y.: Rational points on K3 surfaces and derived equivalence. In: Auel, A., Hassett, B., Varilly-Alvarado, A., Viray, B. (eds.) Brauer Groups and Obstruction Problems: Moduli Spaces and Arithmetic. Progress in Mathematics, vol. 320, pp. 87–113. Birkhaüser, Basel (2017)

  29. Illusie, L., Kato, K., Nakayama, C.: Quasi-unipotent logarithmic Riemann–Hilbert correspondences. J. Math. Sci. Univ. Tokyo 12(1), 1–66 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Illusie, L., Laszlo, Y., Orgogozo, F. (eds.). Travaux de Gabber sur l’uniformisation Locale et la Cohomologie étale des Schémas Quasi-Excellents. Volume 363–364 of Astérisque. Société Mathématique de France, Paris (2014)

  31. Jaspers, A.: The global monodromy property for \(K3\) surfaces allowing a triple point free model. C. R. de l’Acad. des Sci. (2016). (To appear)

  32. Kato, K.: Logarithmic structures of Fontaine–Illusie. In: Igusa, J.-I. (ed.) Algebraic Analysis, Geometry, and Number Theory. Johns Hopkins University Press, Baltimore, pp. 191–224 (1989)

  33. Kato, K., Nakayama, C.: Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over \(\mathbb{C}\). Kodai Math. J. 22(2), 161–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kempf, G., Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings. I. Volume 339 of Lecture Notes in Mathematics. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  35. Knutson, D.: Algebraic Spaces. Vol. 203 of Lecture Notes in Mathematics. Springer, Berlin (1971)

    Google Scholar 

  36. Kollár, J.: Quotient spaces modulo algebraic groups. Ann. Math. (2) 145(1), 33–79 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kollár, J., Nicaise, J., Xu, C.: Semi-stable extensions over 1-dimensional bases. Acta. Math. Sin. Engl. Ser. (2017). doi:10.1007/s10114-017-7048-8

  38. Kollár, J., Xu, C.: The dual complex of Calabi–Yau pairs. Invent. Math. 205(3), 527–557 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kontsevich, M., Soibelman, Y.: Affine structures and non-archimedean analytic spaces. In: Etingof, P., Retakh, V., Singer, I.M. (eds.) The Unity of Mathematics. In Honor of the Ninetieth Birthday of I. M. Gelfand. Volume 244 of Progress in Mathematics, pp. 312–385. Birkhäuser Boston, Inc, Boston (2006)

    Google Scholar 

  40. Künnemann, K.: Projective regular models for abelian varieties, semistable reduction, and the height pairing. Duke Math. J. 95(1), 161–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Laeremans, A., Veys, W.: On the poles of maximal order of the topological zeta function. Bull. Lond. Math. Soc. 31, 441–449 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liedtke, C., Matsumoto, Y.: Good reduction of \(K3\) surfaces. (Preprint). arXiv:1411.4797

  43. Loeser, F., Sebag, J.: Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J. 119, 315–344 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Matsumoto, Y.: On good reduction of some K3 surfaces related to abelian surfaces. Tohoku Math. J. 67, 83–104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Matsuura, Y.: On a construction of quotient spaces of algebraic spaces. In: Vol. 11 of Proceedings of the Institute of Natural Sciences, pp. 1–6. Nihon University, Tokyo (1976)

  46. Mustaţă, M., Nicaise, J.: Weight functions on non-archimedean analytic spaces and the Kontsevich–Soibelman skeleton. Alg. Geom. 2(3), 365–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nakayama, C.: Logarithmic étale cohomology. Math. Ann. 308, 365–404 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nicaise, J.: A trace formula for rigid varieties, and motivic Weil generating series for formal schemes. Math. Ann. 343(2), 285–349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nicaise, J.: A trace formula for varieties over a discretely valued field. J. Reine Angew. Math. 650, 193–238 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Nicaise, J.: Geometric criteria for tame ramification. Math. Z. 273(3), 839–868 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nicaise, J., Sebag, J.: The motivic Serre invariant, ramification, and the analytic Milnor fiber. Invent. Math. 168(1), 133–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nicaise, J., Sebag, J.: The Grothendieck ring of varieties. In: Cluckers, R., Nicaise, J., Sebag, J. (eds.) Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry. Vol. 383 of London Mathematical Society Lecture Notes Series, pp. 145–188. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  53. Nicaise, J., Sebag, J.: Motivic invariants of rigid varieties, and applications to complex singularities. In: Cluckers, R., Nicaise, J., Sebag, J. (eds.) Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry. Vol. 383 of London Mathematical Society Lecture Notes Series, pp. 244–304. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  54. Nicaise, J., Xu, C.: The essential skeleton of a degeneration of algebraic varieties. Am. Math. J. 138(6), 1645–1667 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nicaise, J., Xu, C.: Poles of maximal order of motivic zeta functions. Duke Math. J. 165(2), 217–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Niziol, W.: Toric singularities: log-blow-ups and global resolutions. J. Algebraic Geom. 15(1), 1–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Persson, U.: On degenerations of algebraic surfaces. Memories of the American Mathematical Society. vol. 11, pp. 189. American Mathematical Society, Providence (1977)

  58. Rizov, J.: Moduli stacks of polarized \(K3\) surfaces in mixed characteristic. Serdica Math. J. 32(2–3), 131–178 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Saito, T.: Log smooth extension of a family of curves and semi-stable reduction. J. Algebraic Geom. 13(2), 287–321 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Steenbrink, J.: Limits of Hodge structures. Invent. Math. 31(3), 229–257 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  61. Stewart, A.J., Vologodsky, V.: Motivic integral of K3 surfaces over a non-archimedean field. Adv. Math. 228(5), 2688–2730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stewart, A.J., Vologodsky, V.: Erratum to motivic integral of K3 surfaces over a non-archimedean field. Appendix A of arXiv:1101.0874v4

  63. Temkin, M.: Metrization of differential pluriforms on Berkovich analytic spaces. In: Baker, M., Payne, S. (eds.) Nonarchimedean and Tropical Geometry. Simons Symposia, pp. 195–285. Springer, New York (2016)

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to David Rydh for useful discussions and for suggesting the approach in Sect. 6.4. We are also endebted to Chenyang Xu and Klaus Künnemann for answering our questions on minimal models for K3 surfaces and Mumford models of abelian varieties, respectively, and to the referee for her or his careful evaluation of the paper and for some helpful comments. JN is supported by the ERC Starting Grant MOTZETA (project 306610) of the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Nicaise.

Additional information

Communicated by Vasudevan Srinivas.

Appendix: motivic integration on algebraic spaces

Appendix: motivic integration on algebraic spaces

The aim of this section is to prove that one can use models in the category of algebraic spaces to compute motivic integrals. Specifically, we will extend the computation of motivic zeta functions on log smooth models from [12] to algebraic spaces; this is required for the proof of Theorem 5.3.2. On the way, we answer a question raised by Stewart and Vologodsky in [62, A.4(b)]. In principle, one can go through the entire theory of motivic integration on schemes over discrete valuation rings and check that all the statements remain valid for algebraic spaces. Here, we will use a shortcut instead, passing through the category of formal schemes.

1.1 Weak Néron models and motivic integrals

(7.1.1) Let R be a complete discrete valuation ring with quotient field K and perfect residue field k; we do not require k to have characteristic zero. Let X be a connected smooth and proper algebraic space over K. We define a weak Néron model for X to be a separated smooth algebraic space \(\mathscr {U}\) over R, endowed with an isomorphism \(\mathscr {U}_K\rightarrow X\), such that for every finite unramified extension \(R'\) of R with quotient field \(K'\), the map \(\mathscr {U}(R')\rightarrow X(K')\) is bijective. For our purposes, we will only need the case where X itself is a scheme; in general, the existence of weak Néron models can be proven in exactly the same way as for schemes, by applying the smoothening algorithm in the proof of [9, 3.4.2] to a compactification of \(\mathscr {U}\) over R (see [14] for an extension of Nagata’s embedding theorem to algebraic spaces). The smoothening algorithm is functorial with respect to étale morphisms and carries over to algebraic spaces without difficulties.

(7.1.2) Let \(\omega \) be a volume form on X. For every weak Néron model \(\mathscr {U}\) of X and every connected component C of \(\mathscr {U}_k\), we can define the order \(\mathrm {ord}_C\omega \) of \(\omega \) along C in the same way as for schemes: it is the unique integer m such that \(\pi ^{-m}\omega \) extends to a generator of \(\omega _{\mathscr {U}/R}\) at the generic point of C, where \(\pi \) is a uniformizer in R.

(7.1.3) If Y is an algebraic space of finite type over k, then Y has a dense open subspace that is a scheme of finite type over k [35, II. 6.8]. Thus, by Noetherian induction, we can partition Y into finitely many subschemes of finite type over k. The sum of the classes of these subschemes in the Grothendieck ring of k-varieties \(K_0(\mathrm {Var}_k)\) does not depend on the chosen partition, so that we can take this sum as the definition of the class [Y] in \(K_0(\mathrm {Var}_k)\). If R has equal characteristic, we denote by \(\mathcal {M}_k\) the localized Grothendieck ring of k-varieties \(K_0(\mathrm {Var}_k)[\mathbb {L}^{-1}]\). If R has mixed characteristic, then \(\mathcal {M}_k\) will denote the modified localized Grothendieck ring from [52, § 3.8], obtained by trivializing all universal homeomorphisms. The key result in this appendix is the following proposition.

Proposition 7.1.4

Let X be a connected smooth and proper algebraic space over K, let \(\omega \) be a volume form X, and let \(\mathscr {U}\) be a weak Néron model for X. Then the element

$$\begin{aligned} \sum _{C\in \pi _0(\mathscr {U}_k)}[C]\mathbb {L}^{-\mathrm {ord}_C\omega } \end{aligned}$$
(7.1.5)

of \(\mathcal {M}_k\) only depends on X and \(\omega \), and not on the choice of the weak Néron model of X. In particular, if X is a scheme, then

$$\begin{aligned} \int _X|\omega |=\sum _{C\in \pi _0(\mathscr {U}_k)}[C]\mathbb {L}^{-\mathrm {ord}_C\omega }. \end{aligned}$$

Proof

By [15, 4.2.1], we can consider the analytification \(X^{\mathrm {rig}}\) in the category of rigid analytic K-varieties. This is a smooth and proper rigid K-variety, by [15, 2.3.1]. The volume form \(\omega \) on X induces a volume form on \(X^{\mathrm {rig}}\) that we will still denote by \(\omega \). We claim that the expression (7.1.5) is equal to the motivic integral

$$\begin{aligned} \mathbb {L}^{\dim (X)}\int _{X^{\mathrm {rig}}}|\omega | \end{aligned}$$
(7.1.6)

defined in [43, 4.1.2]—see also [53, p. 266] for a corrigendum. This implies, in particular, that it does not depend on the choice of \(\mathscr {U}\).

So let us prove our claim. In order to compute the motivic integral (7.1.6), we construct a formal weak Néron model \(\mathfrak {V}\) for \(X^{\mathrm {rig}}\) in the sense of [10]. This is a smooth formal R-scheme of finite type, endowed with an open immersion of rigid K-varieties \(\mathfrak {V}_\eta \rightarrow X^{\mathrm {rig}}\) that is bijective on \(K'\)-points for every finite unramified extension of K. Then for every connected component C of \(\mathfrak {V}_k\), one can define the order \(\mathrm {ord}_C\omega \) in exactly the same way as before. By [43, 4.3.1], we have

$$\begin{aligned} \int _{X^{\mathrm {rig}}}|\omega |=\mathbb {L}^{-\dim (X)}\sum _{C\in \pi _0(\mathfrak {V}_k)}[C]\mathbb {L}^{-\mathrm {ord}_C\omega } \end{aligned}$$

in \(\mathcal {M}_k\). The factor \(\mathbb {L}^{-\dim (X)}\) comes from a different choice of normalization of the motivic measure than the one we have made in Sect. 2.2; the assumption in [43, 4.3.1] that \(\mathfrak {V}\) is contained in a formal R-model of \(X^{\mathrm {rig}}\) is redundant, by [53, 2.43].

By [35, II. 6.8] and the assumption that k is perfect, we can find a partition of \(\mathscr {U}_k\) into finitely many connected k-smooth subschemes \(U_1,\ldots ,U_r\). If we denote by \(\mathfrak {U}_i\) the formal completion of the algebraic space \(\mathscr {U}\) along \(U_i\), then \(\mathfrak {U}_i\) is a formal scheme, by [35, V. 2.5]. The reduction of \(\mathfrak {U}_i\) (the closed subscheme defined by the largest ideal of definition \(J_{\mathfrak {U}_i}\)) is precisely \(U_i\); thus it is of finite type over k, and \(\mathfrak {U}_i\) is a smooth special formal R-scheme in Berkovich’s terminology used in [48, 53] (special formal R-schemes are also called formally of finite type in the literature).

For every i in \(\{1,\ldots ,r\}\), we denote by \(\mathfrak {V}_i\rightarrow \mathfrak {U}_i\) the dilatation centered at \(U_i\). This means that \(\mathfrak {V}_i\) is the maximal open formal subscheme of the blow-up of \(\mathfrak {U}_i\) at \(U_i\) such that the ideal \(J_{\mathfrak {U}_i}\mathcal {O}_{\mathfrak {V}_i}\) is generated by a uniformizer in R. The dilatation satisfies a universal property that guarantees, in particular, that the map \(\mathfrak {V}_i(R')\rightarrow \mathfrak {U}_i(R')\) is bijective for every finite unramified extension \(R'\) of R [48, 2.22]. Moreover, \(\mathfrak {V}_i\) is a smooth separated formal R-scheme of finite type, because \(\mathfrak {U}_i\) and \(U_i\) are smooth (see the proof of [48, 4.15]). It follows that the disjoint union \(\mathfrak {V}\) of the formal R-schemes \(\mathfrak {V}_i\) is a weak Néron model of \(X^{\mathrm {rig}}\). If we denote by \(c_i\) the codimension of \(U_i\) in \(\mathscr {U}_k\), then it is easy to check that \([(\mathfrak {V}_i)_k]=[U_i]\mathbb {L}^{c_i}\) in \(K_0(\mathrm {Var}_k)\) (see again the proof of [48, 4.15]). Moreover, if we write \(C_i\) for the unique connected component of \(\mathscr {U}_k\) containing \(U_i\), then a straightforward computation also shows that \(\mathrm {ord}_{(\mathfrak {V}_i)_k}\omega =\mathrm {ord}_{C_i}\omega +c_i\). Hence,

$$\begin{aligned} \mathbb {L}^{\dim (X)}\int _{X^{\mathrm {rig}}}|\omega |=\sum _{D\in \pi _0(\mathfrak {V}_k)}[D]\mathbb {L}^{-\mathrm {ord}_D\omega }=\sum _{C\in \pi _0(\mathscr {U}_k)}[C]\mathbb {L}^{-\mathrm {ord}_C\omega } \end{aligned}$$

in \(\mathcal {M}_k\), by the scissor relations in the Grothendieck ring. \(\square \)

Thus, when X is a scheme, we can use weak Néron models in the category of algebraic spaces to compute motivic integrals of volume forms on X. This answers the question raised in [62, A.4(b)].

1.2 Motivic zeta functions and Nisnevich covers

(7.2.1) From now on, we assume that k is an algebraically closed field of characteristic zero, and we fix an isomorphism \(R\cong k[[\pi ]]\). Let X be a smooth and proper K-scheme with trivial canonical line bundle, and let \(\omega \) be a volume form on X. Let \(\mathscr {X}\) be a proper algebraic space over R endowed with an isomorphism of K-schemes \(\mathscr {X}_K\rightarrow X\). By Proposition 5.2.3, we can find a partition of \(\mathscr {X}_k\) into subschemes \(U_1,\ldots ,U_r\) and, for each j in \(\{1,\ldots ,r\}\), an étale morphism of finite type \(\mathscr {U}_j\rightarrow \mathscr {X}\) such that \(\mathscr {U}_j\) is a scheme and \(\mathscr {U}_j\times _{\mathscr {X}}U_j\rightarrow U_j\) is an isomorphism. For each j, we consider the motivic zeta function \(Z^{\widehat{\mu }}_{\mathscr {U}_j,\omega }(T)\) as defined in [12, § 6.2]; here we abuse notation by writing \(\omega \) for the restriction of \(\omega \) to the generic fiber of \(\mathscr {U}_j\). This zeta function is a formal power series in T with coefficients in the localized Grothendieck ring \(\mathcal {M}^{\widehat{\mu }}_{(\mathscr {U}_j)_k}\) of varieties over \((\mathscr {U}_j)_k\) with good \(\widehat{\mu }\)-action. We define the generating series \(Z_{j}(T)\) by first applying the base change morphism

$$\begin{aligned} \mathcal {M}^{\widehat{\mu }}_{(\mathscr {U}_{j})_k}\rightarrow \mathcal {M}^{\widehat{\mu }}_{U_j} \end{aligned}$$

to the coefficients of \(Z^{\widehat{\mu }}_{\mathscr {U}_j,\omega }(T)\), and then the forgetful morphism

$$\begin{aligned} \mathcal {M}^{\widehat{\mu }}_{U_j}\rightarrow \mathcal {M}^{\widehat{\mu }}_{k}. \end{aligned}$$

Proposition 7.2.2

We have

$$\begin{aligned} Z_{X,\omega }(T)=Z_1(T)+\cdots +Z_r(T) \end{aligned}$$

in \(\mathcal {M}^{\widehat{\mu }}_{k}\).

Proof

The proof is similar to the one of Proposition 7.1.4. For every j in \(\{1,\ldots ,r\}\), we denote by \(\mathfrak {X}_j\) the formal completion of \(\mathscr {X}\) along the subscheme \(U_j\). It is isomorphic to the completion of \(\mathscr {U}_j\) along \(\mathscr {U}_j\times _{\mathscr {X}}U_j\). Thus \(Z_j(T)\) is precisely the motivic zeta function of the pair \(((\mathfrak {X}_j)_\eta ,\omega )\), and the result follows from the fact that the rigid varieties \((\mathfrak {X}_j)_\eta \) form a partition of \(X^{\mathrm {rig}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halle, L.H., Nicaise, J. Motivic zeta functions of degenerating Calabi–Yau varieties. Math. Ann. 370, 1277–1320 (2018). https://doi.org/10.1007/s00208-017-1578-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1578-3

Navigation