Skip to main content
Log in

Algebraic approximation of Kähler threefolds of Kodaira dimension zero

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that for a compact Kähler threefold with canonical singularities and vanishing first Chern class, the projective fibres are dense in the semiuniversal deformation space. This implies that every Kähler threefold of Kodaira dimension zero admits small projective deformations after a suitable bimeromorphic modification. As a corollary, we see that the fundamental group of any Kähler threefold is a quotient of an extension of fundamental groups of projective manifolds, up to subgroups of finite index. In the course of the proof, we show that for a canonical threefold with \(c_1 = 0\), the Albanese map decomposes as a product after a finite étale base change. This generalizes a result of Kawamata, valid in all dimensions, to the Kähler case. Furthermore we generalize a Hodge-theoretic criterion for algebraic approximability, due to Green and Voisin, to quotients of a manifold by a finite group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amorós, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D.: Fundamental groups of compact Kähler manifolds. In: Mathematical Surveys and Monographs, vol. 44. American Mathematical Society, USA (1996)

  2. Bănică, C., Putinar, M., Schumacher, G.: Variation der globalen Ext in Deformationen kompakter komplexer Räume. Math. Ann. 250, 135–155 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bănică, C., Stănăşilă, O.: Algebraic Methods in the Global Theory of Complex Spaces. Wiley, New York (1976)

    MATH  Google Scholar 

  4. Besse, A.L.: Einstein manifolds. In: Classics in Mathematics. Springer, Berlin (2008). (Reprint of the 1987 edition)

  5. Birkenhake, C., Lange, H.: Complex Abelian Varieties, Grundlehren der mathematischen Wissenschaften, vol. 302. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  6. Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. École Norm. Sup. (3) 73, 157–202 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchdahl, N.: Algebraic deformations of compact Kähler surfaces. Math. Z. 253, 453–459 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buchdahl, N.: Algebraic deformations of compact Kähler surfaces II. Math. Z. 258, 493–498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campana, F.: Orbifoldes spéciales et classification biméromorphe des variétés Kählériennes compactes. arXiv:0705.0737v8 [math.AG], version 8 (2009)

  10. Campana, F., Claudon, B.: Abelianity conjecture for special compact Kähler 3-folds. Proc. Edinburgh Math. Soc. 57, 55–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campana, F., Höring, A., Peternell, Th.: Abundance for Kähler threefolds. Ann. Sci. Éc. Norm. Sup. (4) 49(4), 971–1025 (2016)

  12. Cao, J.: On the approximation of Kähler manifolds by algebraic varieties. Math. Ann. 363, 393–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, J.: Vanishing theorems and structure theorems on compact Kähler manifolds. PhD thesis, Université de Grenoble (2013). https://tel.archives-ouvertes.fr/tel-00919536

  14. Claudon, B., Höring, A.: The fundamental group of compact Kähler threefolds (2016). arXiv:1612.04224 [math.AG]

  15. Demailly, J.-P.: Complex Analytic and Differential Geometry (2012). https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  16. Flenner, H., Kosarew, S.: On locally trivial deformations. Publ. RIMS Kyoto 23, 627–665 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math. 44, 225–258 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grauert, H.: Der Satz von Kuranishi für kompakte komplexe Räume. Invent. Math. 25(2), 107–142 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Greb, D., Kebekus, S., Kovács, S.J.: Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties. Compositio Math. 146, 193–219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greb, D., Kebekus, S., Peternell, Th.: Singular spaces with trivial canonical class. Minimal models and extremal rays—proceedings of the conference in honor of Shigefumi Mori’s 60th birthday. In: Advanced Studies in Pure Mathematics (2011). arXiv:1110.5250 [math.AG]. (to appear)

  21. Höring, A., Peternell, Th.: Minimal models for Kähler threefolds. Invent. Math. 203(1), 217–264 (2016)

  22. Kaup, W.: Infinitesimale Transformationsgruppen komplexer Räume. Math. Ann. 160, 72–92 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kawamata, Y.: Minimal models and the Kodaira dimension of algebraic fiber spaces. J. Reine Angew. Math. 363, 1–46 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Kawamata, Y.: Deformations of canonical singularities. J. Am. Math. Soc. 12(1), 85–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knutson, D.: Algebraic Spaces. Lecture Notes in Mathematics, vol. 203. Springer, Berlin (1971)

    MATH  Google Scholar 

  26. Kodaira, K.: On compact analytic surfaces, III. Ann. Math. 78(1), 1–40 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kollár, J.: Shafarevich maps and plurigenera of algebraic varieties. Invent. Math. 113, 177–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kollár, J.: Shafarevich maps and automorphic forms. M. B. Porter Lectures. Princeton University Press, Princeton (1995)

  29. Kollár, J.: Lectures on resolution of singularities. Annals of Mathematics Studies, vol. 166. Princeton University Press, Princeton (2007)

  30. Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Am. Math. Soc. 5(3), 533–703 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. In: Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

  32. Lin, H.-Y.: Algebraic approximations of compact Kähler threefolds of Kodaira dimension \(0\) or \(1\) (2017). arXiv:1704.08109 [math.AG]

  33. Lin, H.-Y.: The bimeromorphic Kodaira problem for compact Kähler threefolds of Kodaira dimension \(1\) (2016). arXiv:1612.09271 [math.AG]

  34. Maschke, H.: Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind. Math. Ann. 52(2–3), 363–368 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. 49(4), 475–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miyaoka, Y.: Extension theorems for Kähler metrics. Proc. Japan Acad. 50, 407–410 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Namikawa, Y.: Extension of 2-forms and symplectic varieties. J. Reine Angew. Math. 539, 123–147 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Namikawa, Y.: Projectivity criterion of Moishezon spaces and density of projective symplectic varieties. Int. J. Math. 13(2), 125–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Namikawa, Y., Steenbrink, J.H.M.: Global smoothing of Calabi–Yau threefolds. Invent. Math. 122, 403–419 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nori, M.V.: Zariski’s conjecture and related problems. Annales scientifiques de l’É.N.S 16(2), 305–344 (1983)

    MathSciNet  MATH  Google Scholar 

  41. Ran, Z.: Deformations of manifolds with torsion or negative canonical bundle. J. Alg. Geom. 1(2), 279–291 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Reid, M.: Projective morphisms according to Kawamata (1983). http://www.maths.warwick.ac.uk/~miles/3folds/Ka.pdf

  43. Rim, D.S.: Equivariant \(G\)-structure on versal deformations. Trans. Am. Math. Soc. 257(1), 217–226 (1980)

    MathSciNet  MATH  Google Scholar 

  44. Schrack, F.: Algebraic approximation of Kähler threefolds. Math. Nachr. 285, 1486–1499 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Sernesi, E.: Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften, vol. 334. Springer, Berlin (2006)

    MATH  Google Scholar 

  46. Sommese, A.J.: On the adjunction theoretic structure of projective varieties. In: Complex Analysis and Algebraic Geometry (Göttingen, 1985), Lecture Notes in Mathematics, vol. 1194. Springer, Berlin, pp. 175–213 (1986)

  47. Takayama, S.: Local simple connectedness of resolutions of log-terminal singularities. Int. J. Math. 14(8), 825–836 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ueno, K.: On compact analytic threefolds with non-trivial Albanese tori. Math. Ann. 278, 41–70 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Voisin, C.: Hodge theory and complex algebraic geometry I. In: Cambridge Studies in Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2002)

  50. Voisin, C.: Hodge theory and complex algebraic geometry II. In: Cambridge Studies in Advanced Mathematics, Vol. 77. Cambridge University Press, Cambridge (2003)

  51. Voisin, C.: On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math. 157, 329–343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Voisin, C.: On the homotopy types of Kähler manifolds and the birational Kodaira problem. J. Differ. Geom. 72, 43–71 (2006)

    Article  MATH  Google Scholar 

  53. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Thomas Peternell for suggesting the topic of algebraic approximation to me, and for many fruitful discussions. Furthermore I would like to thank Zsolt Patakfalvi, Junyan Cao and in particular Christian Lehn for interesting conversations and for answering my questions. Last but not least, the anonymous referee’s input has been very helpful both in simplifying some of the arguments and in improving the statement of Theorem 1.10 significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Graf.

Additional information

Communicated by Ngaiming Mok.

To sing, to brag, to blaze, to grumble...

The author was partially supported by the DFG Grant “Zur Positivität in der komplexen Geometrie”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, P. Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Ann. 371, 487–516 (2018). https://doi.org/10.1007/s00208-017-1577-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1577-4

Keywords

Mathematics Subject Classification

Navigation