Skip to main content
Log in

Finite subgroups of Ham and Symp

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \((X,\omega )\) be a compact symplectic manifold of dimension 2n and let \({\text {Ham}}(X,\omega )\) be its group of Hamiltonian diffeomorphisms. We prove the existence of a constant C, depending on X but not on \(\omega \), such that any finite subgroup \(G\subset {\text {Ham}}(X,\omega )\) has an abelian subgroup \(A\subseteq G\) satisfying \([G:A]\le C\), and A can be generated by n elements or fewer. If \(b_1(X)=0\) we prove an analogous statement for the entire group of symplectomorphisms of \((X,\omega )\). If \(b_1(X)\ne 0\) we prove the existence of a constant \(C'\) depending only on X such that any finite subgroup \(G\subset {\text {Symp}}(X,\omega )\) has a subgroup \(N\subseteq G\) which is either abelian or 2-step nilpotent and which satisfies \([G:N]\le C'\). These results are deduced from the classification of the finite simple groups, the topological rigidity of hamiltonian loops, and the following theorem, which we prove in this paper. Let E be a complex vector bundle over a compact, connected, smooth and oriented manifold M; suppose that the real rank of E is equal to the dimension of M, and that \(\langle e(E),[M]\rangle \ne 0\), where e(E) is the Euler class of E; then there exists a constant \(C''\) such that, for any prime p and any finite p-group G acting on E by vector bundle automorphisms preserving an almost complex structure on M, there is a subgroup \(G_0\subseteq G\) satisfying \(M^{G_0}\ne \emptyset \) and \([G:G_0]\le C''\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Actually the results in [27] refer to the full diffeomorphism group, but it is easy to check that all group actions that are defined there give rise to finite subgroups of the identity component of \({\text {Diff}}\).

  2. There is no consensus in the literature on how to name this notion. Pushforward map seems to be the most usual name in the recent literature on equivariant cohomology in symplectic geometry, see e.g. [14, 15]. Umkehr/Umkehrung (the German word for “reversal”) was the name used by Hopf [16] in the first paper on the subject (in the non equivariant context), and it is still used in homotopy theory [10]. Atiyah and Bott use it in their classical paper [1] on equivariant cohomology in symplectic geometry. For ordinary non-equivariant cohomology, one also uses shriek or transfer map [4, Chap. VI, Def. 11.2]. However, in equivariant cohomology transfer map usually means something different, see e.g. [3, 5, 42].

References

  1. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkar, C.: Singularities of linear systems and boundedness of Fano varieties. Preprint. arXiv:1609.05543

  3. Borel, A.: Seminar on Transformation Groups, Ann. of Math. Studies, vol. 46. Princeton University Press, Princeton (1960)

    Google Scholar 

  4. Bredon, G.: Topology and Geometry, Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1993)

    Google Scholar 

  5. Bredon, G.E.: Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46. Academic, London (1972)

    MATH  Google Scholar 

  6. Browder, W.: Pulling back fixed points. Invent. Math. 87, 331–342 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Browder, W.: Actions of elementary abelian \(p\)-groups. Topology 27(4), 459–472 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Browder, W.: Fixed points of actions of \(p\)-groups on projective varieties. Math. Scand. 66(2), 185–196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982)

    Google Scholar 

  10. Cohen, R.L., Klein, J.R.: Umkehr maps. Homol. Homot. Appl. 11(1), 17–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conner, P.E., Floyd, E.E.: Differentiable Periodic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band, vol. 33. Academic, Springer, New York, Berlin (1964)

    Google Scholar 

  12. Csikós, B., Pyber, L., Szabó, E.: Diffeomorphism groups of compact 4-manifolds are not always Jordan. Preprint. arXiv:1411.7524

  13. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. AMS Chelsea Publishing, Providence (2006). (reprint of the 1962 original)

    Book  MATH  Google Scholar 

  14. Guillemin, V., Ginzburg, V.L., Karshon, Y.: Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, vol. 98. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  15. Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. With an Appendix Containing Two Reprints by Henri Cartan. Mathematics Past and Present. Springer, Berlin (1999)

    MATH  Google Scholar 

  16. Hopf, H.: Zur topologie der abbildungen von mannigfaltigkeiten. Math. Ann. 102, 562–623 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jordan, C.: Mémoire sur les équations différentielles linéaires à intégrale algébrique. J. Reine Angew. Math. 84, 89–215 (1878)

    Article  MATH  Google Scholar 

  18. Kȩdra, J., Kotschick, D., Morita, S.: Crossed flux homomorphisms and vanishing theorems for flux groups. Geom. Funct. Anal. 16(6), 1246–1273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lalonde, F., McDuff, D., Polterovich, L.: Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135, 369–385 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mann, L.N., Su, J.C.: Actions of elementary p-groups on manifolds. Trans. Am. Math. Soc. 106, 115–126 (1963)

    MathSciNet  MATH  Google Scholar 

  21. McDuff, D.: Quantum homology of fibrations over \(S^2\). Int. J. Math. 11, 665–721 (2000)

    MathSciNet  MATH  Google Scholar 

  22. McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn. Oxford University Press, Oxford (1995). (1998)

    MATH  Google Scholar 

  23. Meng, S., Zhang, D.-Q.: Jordan property for non-linear algebraic groups and projective varieties. Preprint. arXiv:1507.02230v1

  24. Minkowski, H.: Zur Theorie der positiven quadratischen Formen. J. Reine Angew. Math. 101, 196–202 (1887). (See also Collected Works. I, 212–218, Chelsea Publishing Company, 1967)

    MathSciNet  Google Scholar 

  25. Mundet i Riera, I.: Jordan’s theorem for the diffeomorphism group of some manifolds. Proc. Am. Math. Soc. 138, 2253–2262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mundet i Riera, I.: Finite group actions on homology spheres and manifolds with nonzero Euler characteristic. Preprint. arXiv:1403.0383v2

  27. Mundet i Riera, I.: Non Jordan groups of diffeomorphisms and actions of compact Lie groups on manifolds. Transformation Groups. Preprint (to appear). arXiv:1412.6964

  28. Mundet i Riera, I.: Finite groups acting symplectically on \(T^2\times S^2\). Proc. Am. Math. Soc. 369(6), 4457–4483 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mundet i Riera, I., Turull, A.: Boosting an analogue of Jordan’s theorem for finite groups. Adv. Math. 272, 820–836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polterovich, L.: Floer homology, dynamics and groups, Morse theoretic methods in nonlinear analysis and in symplectic topology, 417–438, NATO Sci. Ser. II Math. Phys. Chem., 217. Springer, Dordrecht (2006)

  31. Popov, V.L.: On the Makar–Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties. In: Peter Russell’s Festschrift, Proceedings of the Conference on Affine Algebraic Geometry Held in Professor Russell’s honour, 1–5 June 2009, McGill University, Montreal., Volume 54 of Centre de Recherches Mathématiques CRM Proc. and Lect. Notes, pp. 289–311 (2011)

  32. Popov, V.L.: Finite subgroups of diffeomorphism groups. Preprint. arXiv:1310.6548

  33. Popov, V.L.: Jordan groups and automorphism groups of algebraic varieties. In: Cheltsov, I., et al. (eds.) Automorphisms in Birational and Affine Geometry, Springer Proceedings in Mathematics and Statistics, vol. 79, pp. 185–213. Springer, Berlin (2014)

    Google Scholar 

  34. Prokhorov, Y., Shramov, C.: Jordan property for Cremona groups. Am. J. Math. 138(2), 403–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Prokhorov, Y., Shramov, C.: Jordan property for groups of birational selfmaps. Compos. Math. 150(12), 2054–2072 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Quillen, D.: The spectrum of an equivariant cohomology ring. I, II. Ann. Math. (2) 94, 549–572 (1971). (ibid. (2) 94 (1971), 573–602)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robinson, D.J.S.: A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, 2nd edn. Springer, New York (1996)

    Book  Google Scholar 

  38. Roseblade, J.E.: On groups in which every subgroup is subnormal. J. Algebra 2, 402–412 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sambale, B.: Exponent and \(p\)-rank of finite \(p\)-groups and applications. Arch. Math. (Basel) 103(1), 11–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Serre, J.-P.: Bounds for the Orders of the Finite Subgroups of \(G(k)\), Group Representation Theory. EPFL Press, Lausanne (2007)

    MATH  Google Scholar 

  41. Serre, J.-P.: A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field. Moscow Math. J. 9, 193–208 (2009)

    MathSciNet  Google Scholar 

  42. tom Dieck, T.: Transformation Groups, De Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter & Co., Berlin (1987)

    Book  Google Scholar 

Download references

Acknowledgements

I wish to thank A. Jaikin, A. Turull and C. Sáez for useful comments. Special thanks to A. Jaikin for providing the proof of Lemma 4.5, which is much shorter and more efficient than the original one. Many thanks finally to the referee for a detailed and very useful report, for a number of corrections and suggestions to improve the paper, and for providing an alternative and more direct proof of Theorem 6.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Mundet i Riera.

Additional information

Communicated by Jean-Yves Welschinger.

This work has been partially supported by the (Spanish) MEC Project MTM2012-38122-C03-02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundet i Riera, I. Finite subgroups of Ham and Symp. Math. Ann. 370, 331–380 (2018). https://doi.org/10.1007/s00208-017-1566-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1566-7

Mathematics Subject Classification

Navigation