Skip to main content
Log in

Complex Monge–Ampère equation for measures supported on real submanifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \((X,\omega )\) be a compact n-dimensional Kähler manifold on which the integral of \(\omega ^n\) is 1. Let K be an immersed real \(\mathcal {C}^3\) submanifold of X such that the tangent space at any point of K is not contained in any complex hyperplane of the (real) tangent space at that point of X. Let \(\mu \) be a probability measure compactly supported on K with \(L^p\) density for some \(p>1\). We prove that the complex Monge–Ampère equation \((dd^c \varphi + \omega )^n=\mu \) has a Hölder continuous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real Submanifolds in Complex Space and Their Mappings, vol. 47 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1999)

    MATH  Google Scholar 

  2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  Google Scholar 

  3. Bell, S.: Mapping problems in complex analysis and the \({\overline{\partial }}\)-problem. Bull. Am. Math. Soc. (N.S.) 22, 233–259 (1990)

    Article  MathSciNet  Google Scholar 

  4. Benelkourchi, S., Jennane, B., Zeriahi, A.: Polya’s inequalities, global uniform integrability and the size of plurisubharmonic lemniscates. Ark. Mat. 43, 85–112 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bishop, E.: Differentiable manifolds in complex Euclidean space. Duke Math. J. 32, 1–22 (1965)

    Article  MathSciNet  Google Scholar 

  6. Błocki, Z., Kołodziej, S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135, 2089–2093 (2007). (electronic)

    Article  MathSciNet  Google Scholar 

  7. Demailly, J.-P.: Regularization of closed positive currents of type \((1,1)\) by the flow of a Chern connection. In: Contributions to Complex Analysis and Analytic Geometry, Aspects Mathematics, E26, pp. 105–126. Vieweg, Braunschweig (1994)

  8. Demailly, J.-P., Dinew, S., Guedj, V., Pham, H.H., Kołodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge–Ampère equations. J. Eur. Math. Soc. (JEMS) 16, 619–647 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dinew, S.: Uniqueness in \({\cal{E}}(X,\omega )\). J. Funct. Anal. 256, 2113–2122 (2009)

  10. Dinew, S., Guedj, V., Zeriahi, A.: Open problems in pluripotential theory. Complex Var. Elliptic Equ. 61, 902–930 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dinew, S., Zhang, Z.: On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds. Adv. Math. 225, 367–388 (2010)

    Article  MathSciNet  Google Scholar 

  12. Dinh, T.-C., Nguyên, V.-A.: Characterization of Monge–Ampère measures with Hölder continuous potentials. J. Funct. Anal. 266, 67–84 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dinh, T.-C., Nguyên, V.-A., Sibony, N.: Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differ. Geom. 84, 465–488 (2010)

    Article  MathSciNet  Google Scholar 

  14. Dinh, T.-C., Sibony, N.: Super-potentials of positive closed currents, intersection theory and dynamics. Acta Math. 203, 1–82 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dyn\(^{\prime }\)kin, E.M.: Methods of the theory of singular integrals: Hilbert transform and Calderón–Zygmund theory. In: Commutative Harmonic Analysis, I, vol. 15 of Encyclopaedia of Mathematical Sciences, pp. 167–259. Springer, Berlin (1991)

  16. Hiep, P.H.: Hölder continuity of solutions to the Monge–Ampère equations on compact Kähler manifolds. Ann. Inst. Fourier (Grenoble) 60, 1857–1869 (2010)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L.: Notions of Convexity, vol. 127 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA (1994)

    Google Scholar 

  18. Kaufmann, L.: A Skoda-type integrability theorem for singular Monge–Ampère measures. to appear in Michigan Math. J

  19. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)

    Article  MathSciNet  Google Scholar 

  20. Kołodziej, S.: The complex Monge–Ampère equation and pluripotential theory. Memoirs of the American Mathematical Society, vol. 178, no 840, pp. x\(+\)64. American Mathematical Society, Providence, RI (2005)

  21. Kołodziej, S.: Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in \(L^p\): the case of compact Kähler manifolds. Math. Ann. 342, 379–386 (2008)

    Article  MathSciNet  Google Scholar 

  22. Krantz, S.G.: Geometric Function Theory, Cornerstones. Birkhäuser Boston, Inc., Boston, MA (2006). (Explorations in complex analysis)

    Google Scholar 

  23. Lunardi, A.: Interpolation theory. http://prmat.math.unipr.it/~lunardi/LectureNotes/SNS1999.pdf

  24. Merker, J., Porten, E.: Characteristic foliations on maximally real submanifolds of \({\mathbb{C}}^n\) and removable singularities for CR functions. Int. Math. Res. Pap. 2006, 72069 (2006). doi:10.1155/IMRP/2006/72069

  25. Merker, J., Porten, E.: Holomorphic extension of CR functions, envelopes of holomorphy, and removable singularities. Int. Math. Res. Surv. 2006, 28925 (2006). doi:10.1155/IMRS/2006/28925

  26. Phong, D.H., Song, J., Sturm, J.: Complex Monge–Ampère equations. In: Surveys in Differential Geometry. Vol. XVII, vol. 17 of Surveys in Differential Geometry, pp. 327–410. International Press, Boston, MA (2012)

    Article  Google Scholar 

  27. Sibony, N.: Quelques problèmes de prolongement de courants en analyse complexe. Duke Math. J. 52, 157–197 (1985)

    Article  MathSciNet  Google Scholar 

  28. Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \({ C}^{n}\). Bull. Soc. Math. Fr. 100, 353–408 (1972)

    Article  MathSciNet  Google Scholar 

  29. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  30. Vu, D.-V.: Equidistribution rate for Fekete points on some real manifolds. arXiv:1512.08262 (2015) (to appear in Amer. J. Math)

  31. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Tien-Cuong Dinh for introducing him this research topic and for his illuminating discussions. He also wants to express his gratitude to the anonymous referee for his useful remarks which improved considerably the presentation of the paper and to Lucas Kaufmann for fruitful discussions. “Funding was provided by Region Ile-de-France”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Viet Vu.

Additional information

Communicated by Ngaiming Mok.

This research is supported by grants from Région Ile-de-France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, DV. Complex Monge–Ampère equation for measures supported on real submanifolds. Math. Ann. 372, 321–367 (2018). https://doi.org/10.1007/s00208-017-1565-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1565-8

Navigation