Skip to main content
Log in

The monodromy theorem for compact Kähler manifolds and smooth quasi-projective varieties

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given any connected topological space X, assume that there exists an epimorphism \(\phi {:}\; \pi _1(X) \rightarrow {\mathbb {Z}}\). The deck transformation group \({\mathbb {Z}}\) acts on the associated infinite cyclic cover \(X^\phi \) of X, hence on the homology group \(H_i(X^\phi , {\mathbb {C}})\). This action induces a linear automorphism on the torsion part of the homology group as a module over the Laurent ring \({\mathbb {C}}[t,t^{-1}]\), which is a finite dimensional \({\mathbb {C}}\)-vector space. We study the sizes of the Jordan blocks of this linear automorphism. When X is a compact Kähler manifold, we show that all the Jordan blocks are of size one. When X is a smooth complex quasi-projective variety, we give an upper bound on the sizes of the Jordan blocks, which is an analogue of the Monodromy Theorem for the local Milnor fibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arapura, D.: Geometry of cohomology support loci for local systems. I. J. Algebr. Geom. 6(3), 563–597 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Budur, N., Wang, B.: Cohomology jump loci of quasi-projective varieties. Ann. Sci. Cole Norm. Sup. 48(1), 227236 (2015)

    MathSciNet  Google Scholar 

  3. Budur, N., Wang, B.: Cohomology jump loci of differential graded Lie algebras. Compos. Math. 151(8), 1499–1528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Budur, N., Wang, B.: Local Systems on Analytic Germ Complements. arXiv:1508.07867

  5. de Cataldo, M., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc. (N.S.) 46(4), 535–633 (2009)

  6. Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dimca, A.: Singularities and Topology of Hypersurfaces. Springer, New York (1992)

    Book  MATH  Google Scholar 

  8. Dimca, A.: Monodromy and Hodge Theory of Regular Functions. New Developments in Singularity Theory (Cambridge, 2000), Nato Science Series II: Mathematics, Physics and Chemistry, vol. 21. Kluwer Academic Publications, Dordrecht (2001)

  9. Dimca, A., Libgober, A.: Regular functions transversal at infinity. Tohoku Math. J. 58(4), 549–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dimca, A., Némethi, A.: Hypersurface Complements, Alexander Modules and Monodromy. Real and Complex Singularities, Contemporary Mathematics, vol. 354, pp. 19–43. American Mathematical Society, Providence (2004)

  11. Dimca, A., Papadima, S.: Non-abelian cohomology jump loci from an analytic viewpoint. Commun. Contemp. Math. 16(4), 1350025 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández, M., Gray, A., Morgan, J.: Compact symplectic manifolds with free circle actions, and Massey products. Mich. Math. J. 38(2), 271–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldman, W., Millson, J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. 67, 43–96 (1988)

    Article  MATH  Google Scholar 

  14. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

  15. Libgober, A.: Alexander invariants of plane algebraic curves, Singularities, Part 2 (Arcata, Calif., 1981). In: Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 135–143. American Mathematical Society, Providence, RI (1983)

  16. Libgober, A.: Homotopy groups of the complements to singular hypersurfaces, II. Ann. Math. 139(1), 117–144 (1994)

  17. Malgrange, B.: Letter to the editors. Invent. Math. 20, 171–172 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maxim, L.: Intersection homology and Alexander modules of hypersurface complements. Comment. Math. Helv. 81(1), 123–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morgan, J.: The algebraic topology of smooth algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 48, 137–204 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papadima, S., Suciu, A.: Algebraic monodromy and obstructions to formality. Forum Math. 22(5), 973–983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qin, L., Wang, B.: A Family of Compact Complex-Symplectic Calabi–Yau Manifolds that are Nonkähler. arXiv:1601.04337

  22. Wang, B.: Torsion points on the cohomology jump loci of compact Kähler manifolds. Math. Res. Lett. 23(2), 545–563 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Lizhen Qin for many helpful discussions. N. Budur and Y. Liu were partially supported by a FWO Grant, a KU Leuven OT Grant, and a Flemish Methusalem Grant. We also would like to thank the anonymous referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Liu.

Additional information

Communicated by Ngaiming Mok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budur, N., Liu, Y. & Wang, B. The monodromy theorem for compact Kähler manifolds and smooth quasi-projective varieties. Math. Ann. 371, 1069–1086 (2018). https://doi.org/10.1007/s00208-017-1541-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1541-3

Mathematics Subject Classification

Navigation