Skip to main content
Log in

On the \({\ell }^2\)-Betti numbers of universal quantum groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that the first \({\ell }^2\)-Betti number of the duals of the free unitary quantum groups is one, and that all \({\ell }^2\)-Betti numbers vanish for the duals of the quantum automorphism groups of full matrix algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Banica, T.: Théorie des représentations du groupe quantique compact libre \({\rm O}(n)\). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Banica, T.: Le groupe quantique compact libre \({{\rm U}}(n)\). Comm. Math. Phys. 190(1), 143–172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banica, T.: Representations of compact quantum groups and subfactors. J. Reine Angew. Math. 509, 167–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banica, T.: Symmetries of a generic coaction. Math. Ann. 314(4), 763–780 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banica, T., Collins, B.: Integration over quantum permutation groups. J. Funct. Anal. 242(2), 641–657 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergman, G.M.: Modules over coproducts of rings. Trans. Am. Math. Soc. 200, 1–32 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bichon, J.: Gerstenhaber-Schack and Hochschild cohomologies of Hopf algebras. Doc. Math. 21, 955–986 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Bichon, J.: Cohomological dimensions of universal cosoverign Hopf algebras. Preprint, arXiv:1611.02069

  9. Bichon, J., Kyed, D., Raum, S.: Higher \(\ell ^2\)-Betti numbers of universal quantum groups. Preprint, arXiv:1612.07706

  10. Brown, K.R., Goodearl, K.R.: Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona, Barcelona (2002)

    Book  Google Scholar 

  11. Bédos, E., Murphy, G.J., Tuset, L.: Co-amenability of compact quantum groups. J. Geom. Phys. 40(2), 130–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brannan, M.: Approximation properties for free orthogonal and free unitary quantum groups. J. Reine Angew. Math. 672, 223–251 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Chirvasitu, A.: Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras. Algebra Number Theory 8(5), 1179–1199 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, B., Härtel, J., Thom, A.: Homology of free quantum groups. C. R. Math. Acad. Sci. Paris 347(5–6), 271–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fima, P.: Kazhdan’s property T for discrete quantum groups. Int. J. Math. 21(1), 47–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kustermans, J., Tuset, L.: A survey of \(C^*\)-algebraic quantum groups. I. Irish Math. Soc. Bull. 43, 8–63 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Kyed, D., Thom, A.: Applications of Følner’s condition to quantum groups. J. Noncommutative Geom. 7(2), 547–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33(6), 837–934 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kustermans, J., Vaes, S.: Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(1), 68–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kyed, D.: \(L^2\)-Betti numbers of coamenable quantum groups. Münster J. Math. 1(1), 143–179 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Kyed, D.: \(L^2\)-homology for compact quantum groups. Math. Scand. 103(1), 111–129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kyed, D.: On the zeroth \(L^2\)-homology of a quantum group. Münster J. Math. 4, 119–127 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Kyed, D.: An \(L^2\)-Kunneth formula for tracial algebras. J. Operator Theory 67(2), 317–327 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Kyed, D., Raum, S., Vaes, S., Valvekens, M.: \(L^2\)-Betti numbers of rigid \(C^*\)-tensor categories and discrete quantum groups. Preprint, arXiv:1701.06447

  26. Lück, W.: \(L^2\)-invariants: theory and applications to geometry and \(K\)-theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics). Springer, Berlin (2002)

  27. Meyer, R., Nest, R.: The Baum–Connes conjecture via localisation of categories. Topology 45(2), 209–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reich, H.: On the \(K\)- and \(L\)-theory of the algebra of operators affiliated to a finite von Neumann algebra. K-Theory 24(4), 303–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schneider, H.-J.: Normal basis and transitivity of crossed products for Hopf algebras. J. Algebra 152(2), 289–312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thom, A.: \(L^2\)-cohomology for von Neumann algebras. Geom. Funct. Anal. 18(1), 251–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Timmermann, T.: An Invitation to Quantum Groups and Duality. From Hopf Algebras to Multiplicative Unitaries and Beyond. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zurich (2008)

    Book  MATH  Google Scholar 

  32. Tomatsu, R.: Amenable discrete quantum groups. J. Math. Soc. Jpn. 58(4), 949–964 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups

  34. Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vergnioux, R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vergnioux, R.: The property of rapid decay for discrete quantum groups. J. Operator Theory 57(2), 303–324 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Vergnioux, R.: Paths in quantum Cayley trees and \(L^2\)-cohomology. Adv. Math. 229(5), 2686–2711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Voigt, C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vaes, S., Vergnioux, R.: The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J. 140(1), 35–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vaes, S., Vander Vennet, N.: Poisson boundary of the discrete quantum group \(\widehat{A_u(F)}\). Compos. Math. 146(4), 1073–1095 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  44. Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23(1), 117–181 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Woronowicz, S.L.: Compact quantum groups, in Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)

Download references

Acknowledgements

The authors thank Julien Bichon for pointing out the reference [10], which provides a reference for the result shown in the “Appendix”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kyed.

Additional information

Communicated by Thomas Schick.

D. K. gratefully acknowledges the financial support from the Villum foundation (Grant 7423). Sven Raum’s research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. (622322).

Appendix

Appendix

In this section we provide a proof of the fact that \({{\text {Pol}}}(O_2^+)\) is a domain; i.e. that it has no non-trivial zero-divisors. This fact can be deduced from [10, Chapter I.1] using the well known identification of \({{\text {Pol}}}(O_2^+)\) with \({{\text {Pol}}}(SU_{-1}(2))\) (cf. [2, Proposition 5 & 6]) and the fact that the underlying rings of \({{\text {Pol}}}(SU_{-1}(2))\) and of \({{\text {Pol}}}(SL_{-1}(2))\) are isomorphic. For the benefit of the reader, we give a short proof in operator algebraic terminology, only using the identification \({{\text {Pol}}}(O_2^+) \cong {{\text {Pol}}}(SU_{-1}(2))\).

We denote by \(\alpha \) and \(\gamma \) the canonical generators of \({{\text {Pol}}}(SU_{-1}(2))\), and recall [44] that the defining relations are

$$\begin{aligned} \begin{array}{lr} \alpha ^*\alpha + \gamma ^*\gamma = 1&{} \qquad \qquad \alpha \gamma + \gamma \alpha = 0\\ \alpha \alpha ^* + \gamma \gamma ^*=1&{} \qquad \qquad \alpha \gamma ^*+ \gamma ^*\alpha = 0\\ \gamma \gamma ^*-\gamma ^*\gamma = 0&{} \qquad \qquad \\ \end{array} \end{aligned}$$

Note that this implies that \(\alpha ^*\alpha =\alpha \alpha ^*\) and that \(\gamma \gamma ^*\) is a central element. In the following we use the convention that \(\alpha ^{i}=(\alpha ^*)^{-i}\) for \(i<0\) and \(x^0=1\) for \(x\ne 0\). By [44] the set

$$\begin{aligned} {\mathscr {B}}:=\{\alpha ^i \gamma ^{j}\gamma ^{*k} \mid i\in {\mathbb Z},j,k\in {\mathbb N}_0\} \end{aligned}$$

constitutes a linear basis for \({{\text {Pol}}}(SU_{-1}(2))\). For a non-zero element \(x{=}\sum \lambda _{ijk}\alpha ^i \gamma ^{j}\gamma ^{*k} \in {{\text {Pol}}}(SU_{-1}(2))\) we define its degrees with respect to the basis:

$$\begin{aligned} \deg _\alpha (x)&:={{\text {max}}}\{i\in {\mathbb Z}\mid \exists j,k\in {\mathbb N}_0: \lambda _{ijk}\ne 0 \};\\ \deg _{\gamma ,\gamma ^*}(x)&:={{\text {max}}}\{p\in {\mathbb N}\mid \exists i\in {\mathbb Z}, k,l\in {\mathbb N}_0 : \lambda _{ijk}\ne 0 \ \text {and} \ p=j+k\}. \end{aligned}$$

Proposition 3.1

The ring \({{\text {Pol}}}(SU_{-1}(2))\) is a domain.

Proof

We first prove the following claim:

Claim 1

For \(i,j\in {\mathbb Z}\) there exists a polynomial \(p_{i,j}\in {\mathbb C}[X,Y]\) such that \(\alpha ^i\alpha ^j= \alpha ^{i+j}p_{i,j}(\gamma ,\gamma ^*)\)

Proof of Claim 1

When i and j have the same sign this is clear — the constant polynomial 1 does the job. If \(i\geqslant 0\), \(j<0\) and \(i>|j|\) then

$$\begin{aligned} \alpha ^i \alpha ^j=\underbrace{\alpha \cdots \alpha }_{i}\underbrace{\alpha ^*\cdots \alpha ^*}_{-j}=\alpha ^{i+j} (\alpha \alpha ^*)^{-j}=\alpha ^{i+j}(1-\gamma \gamma ^*)^{-j}, \end{aligned}$$

and, similarly, if \(i\leqslant -j\) we get

$$\begin{aligned} \alpha ^i \alpha ^j=\underbrace{\alpha \cdots \alpha }_{i}\underbrace{\alpha ^*\cdots \alpha ^*}_{-j}=\alpha ^{*(-i-j)} (\alpha \alpha ^*)^{i}=\alpha ^{i+j}(1-\gamma \gamma ^*)^{i}. \end{aligned}$$

The remaining case (\(i<0\) and \(j\geqslant 0\)) follows by symmetry. \(\square \)

Claim 2

The element \(\alpha ^i\) is not a left zero-divisor for any \(i\in {\mathbb Z}\).

Proof of Claim 2

Since \(\alpha ^*\alpha =\alpha \alpha ^*\), it suffices to prove that \(\alpha \alpha ^*\) (and hence none of its powers) is a left zero-divisor. To this end, assume that \(x\in {{\text {Pol}}}(SU_{-1}(2))\) satisfies \(\alpha \alpha ^* x=0\). Since \(\alpha \alpha ^*=1-\gamma \gamma ^*\), this means \(x=\gamma \gamma ^*x\) and by expanding x as \(x=\sum _{i,j,k}\lambda _{ijk}\alpha ^i\gamma ^j\gamma ^{*k}\) and using that \(\gamma \gamma ^*\) is central this translates into

$$\begin{aligned} \sum _{i,j,k}\lambda _{ijk}\alpha ^i\gamma ^j\gamma ^{*k}=\sum _{i,j,k}\lambda _{ijk}\alpha ^i\gamma ^{j+1}\gamma ^{*(k+1)}. \end{aligned}$$

If these terms were non-zero, we could apply \(\deg _{\gamma , \gamma ^*}(-)\) on both sides to obtain a contradiction. Hence \(x=0\). \(\square \)

We now turn to the actual proof of the fact that \({{\text {Pol}}}(SU_{-1}(2))\) is a domain. Let \(x=\sum _{ijk}\lambda _{ijk} \alpha ^i \gamma ^j\gamma ^{*k}\) and \(y=\sum _{lmn}\mu _{lmn}\alpha ^l\gamma ^m\gamma ^{*n} \) in \({{\text {Pol}}}(SU_{-1}(2))\) be non-zero elements and denote their \(\alpha \)-degrees by \(i_0\) and \(l_0\), respectively. Assuming that \(xy=0\), we have

$$\begin{aligned} 0=\sum _{\begin{array}{c} i,j,k\\ l,m,n \end{array}}\lambda _{ijk} \mu _{lmn} \alpha ^i \gamma ^j\gamma ^{*k}\alpha ^l\gamma ^m\gamma ^{*n} \end{aligned}$$

and hence

$$\begin{aligned}&\sum _{\begin{array}{c} i \leqslant i_0, l \leqslant l_0 \\ i + l < i_0 + l_0 \\ j,k,m,n \end{array}} \lambda _{ijk} \mu _{lmn} \alpha ^i \gamma ^j\gamma ^{*k}\alpha ^l\gamma ^m\gamma ^{*n} \nonumber \\&\quad = -\sum _{\begin{array}{c} j,k\\ m,n \end{array}} \lambda _{i_0jk}\mu _{l_0mn} \alpha ^{i_0} \gamma ^j\gamma ^{*k}\alpha ^{l_0}\gamma ^m\gamma ^{*n} \nonumber \\&\quad = -\sum _{\begin{array}{c} j,k\\ m,n \end{array}} \lambda _{i_0jk} \mu _{l_0mn}(-1)^{(j+k)|l_0|} \alpha ^{i_0}\alpha ^{l_0} \gamma ^j\gamma ^{*k}\gamma ^m\gamma ^{*n}\nonumber \\&\quad = -\sum _{\begin{array}{c} j,k\\ m,n \end{array}} \lambda _{i_0jk} \mu _{l_0mn}(-1)^{(j+k)|l_0|} \alpha ^{i_0}\alpha ^{l_0} \gamma ^{j+m}\gamma ^{*(k+n)} \text {.} \end{aligned}$$
(5)

Applying Claim 1, we see that the last term has the form \(\alpha ^{i_0+l_0}p(\gamma ,\gamma ^*)\) for some \(p\in {\mathbb C}[X,Y]\) and hence its \(\alpha \)-degree is \(i_0+l_0\) if \(p(\gamma ^*,\gamma )\ne 0\). Similarly, we get that

$$\begin{aligned} \deg _\alpha \left( \sum _{\begin{array}{c} i<i_0,l<l_0\\ j,k,m,n \end{array}}\lambda _{ijk} \mu _{lmn} \alpha ^i \gamma ^j\gamma ^{*k}\alpha ^l\gamma ^m\gamma ^{*n} \right) <i_0+l_0 \end{aligned}$$

and hence the equality (5) can only happen if \(p(\gamma ,\gamma ^*)=0\). We therefore have

$$\begin{aligned} 0&=\sum _{\begin{array}{c} j,k\\ m,n \end{array}}\mu _{l_0mn}\lambda _{i_0jk}(-1)^{(j+k)|l_0|} \alpha ^{i_0}\alpha ^{l_0} \gamma ^{j+m}\gamma ^{*(k+n)}\\&= \alpha ^{i_0}\alpha ^{l_0}\left( \sum _{\begin{array}{c} j,k\\ m,n \end{array}}\mu _{l_0mn}\lambda _{i_0jk}(-1)^{(j+k)|l_0|}\gamma ^{j+m}\gamma ^{*(k+n)}\right) \end{aligned}$$

and, by Claim 2, this implies that

$$\begin{aligned} 0&=\sum _{\begin{array}{c} j,k\\ m,n \end{array}}\mu _{l_0mn}\lambda _{i_0jk}(-1)^{(j+k)|l_0|} \gamma ^{j+m}\gamma ^{*(k+n)} \\&=\left( \sum _{j,k} \lambda _{i_0,j,k} (-1)^{(j+k)|l_0|}\gamma ^j\gamma ^{*k} \right) \left( \sum _{m,n} \mu _{l_0mn} \gamma ^m\gamma ^{*n}\right) \end{aligned}$$

However, since \({\mathscr {B}}\) is a linear basis for \({{\text {Pol}}}(SU_{-1}(2))\), the map \({\mathbb C}[X,Y]\ni p\mapsto p(\gamma ,\gamma ^*)\in {{\text {Pol}}}(SU_{-1}(2))\) is injective, and since \({\mathbb C}[X,Y]\) is a domain one of the factors in the last product needs to be zero, which contradicts the fact that \(i_0\) and \(l_0\) are chosen such that there exist \(j,k,l,m\in {\mathbb N}_0\) with \(\lambda _{i_0jk}\ne 0\) and \(\mu _{l_0,n,m}\ne 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyed, D., Raum, S. On the \({\ell }^2\)-Betti numbers of universal quantum groups. Math. Ann. 369, 957–975 (2017). https://doi.org/10.1007/s00208-017-1531-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1531-5

Keywords

Mathematics Subject Classification

Navigation