Skip to main content
Log in

Regularity and compactness of harmonic-Einstein equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let (Mxg) be pointed Riemannian manifold with \(\mathrm{Vol}(B_1(x))\ge \mathrm{v}>0\) and satisfy harmonic-Einstein equation \(\mathrm{Ric}_g-\nabla u\otimes \nabla u=\lambda g\) with \(|\lambda |\le n-1\), where \(u:(M,g)\rightarrow (N,h)\) is a harmonic map to a fixed compact Riemannian manifold (Nh). Then for any \(p<1\), we prove the \(L^p\) curvature estimate . As a consequence, if (Nh) has nonpositive sectional curvature, we have \(|\mathrm{Ric}|\le C(n,\mathrm{v},N)\). That means harmonic-Einstein equation automatically implies bounded Ricci curvature provided nonpositive sectional curvature of (Nh). Let \((X,x_\infty , d,u_\infty )\) be the limit of a sequence of harmonic-Einstein manifolds \((M_i,x_i,g_i,u_i)\). We show that the singular set of X is closed and the convergence is smooth on the regular part. We also prove an orbifold type compactness theorem of harmonic-Einstein equations with bounded \(\int _M|\mathrm{Rm}|^{n/2}\) without assuming nonpositive sectional curvature of (Nh), which generalizes Xu’s compactness result in Yiyan (Adv. Math. 231(2):680–708, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc. 2(3), 455–490 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, M.: Convergence and rigidity of metrics under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bando, S., Kasue, A., Nakajima, H.: On the construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97, 313–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, H., Sesum, N.: The compactness result for Kähler Ricci solitons. Adv. Math. 211, 794–818 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carron, G.: Some old and new results about rigidity of critical metric. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13(4), 1091–1113 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Cheeger, J.: Degeneration of Riemannian metrics under Ricci curvature bounds. Lezioni Fermiane. [Fermi Lectures] Scuola Normale Superiore, Pisa, pp. ii\(+\)77 (2001)

  7. Cheeger, J.: Differentiability of lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger, J.: Integral bounds on curvature, elliptic estimates, and rectifiability of singular set. Geom. Funct. Anal. 13, 20–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math. 191, 321–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66(6), 965–990 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Naber, A.: Regularity of Einstein manifolds and the codimension 4 conjecture. Ann. of Math. 182(3), 1093–1165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Weber, B.: Moduli spaces of critical Riemanian metrics with \(L^{\frac{n}{2}}\) norm curvature bounds. Adv. Math 226, 1307–1330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colding, T.: Ricci curvature and volume convergence. Ann. Math. 145, 477–501 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colding, T., Minicozzi II, W.: Harmonic functions on manifolds. Ann. Math. 146(3), 725–747 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Costa, D., Liao, G.: On removability of a singular submanifold for weakly harmonic maps. J. Fac. Sci. Univ. Tokyo Sect. IA Math 35(2), 321C344 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Croke, C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. école Norm. Super. 13(4), 419C435 (1980)

    MathSciNet  Google Scholar 

  18. Datar, V., Székelyhidi, G.: Kähler–Einstein metrics along the smooth continuity method (2015) arXiv:1506.07495v1 [math.DG]

  19. Ding, Y.: Heat kernels and Green’s functions on limit spaces. Comm. Anal. Geom. 10(3), 475–514 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20, 385–524 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, Q., Lin, F.: Elliptic partial differential equations, Second ed. Courant lecture notes in mathematics, 1. American Mathematical Society, Providence, RI, pp. x\(+\)147 (2011)

  23. Haslhofer, R., Müller, R.: A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. 21(5), 1091–1116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, 5. American Mathematical Society, Providence, RI. pp. x\(+\)309 (1999)

  25. Hein, H., Naber, A.: New logarithmic Sobolev inequalities and an e-regularity theorem for the Ricci flow. Commun. Pure Appl. Math. 67(9), 1543–1561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, W., Naber, A.: \(L^2\) Curvature bounds on manifolds with bounded Ricci curvature (2016) arXiv:1605.05583 [math.DG]

  27. Kazdan, D.M., DeTurck, J.L.: Some regularitity theorems in Riemnannian geometry. Ann. Sci. Ecole Norm. Sup. 14(3), 249–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liao, G.: A regularity theorem for harmonic maps with small energy. J. Differ. Geom. 22(2), 233–241 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, F., Wang, C.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific Publishing Co. Pte. Ltd, Hackensack (2008). xii+267 pp

    Book  MATH  Google Scholar 

  30. List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16(5), 1007–1048 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lott, J.: On the long-time behavior of type-III Ricci flow solutions. Math. Ann. 339(3), 627–666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. éc. Norm. Supér. 45(1), 101–142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics. Springer, New York (1998)

    Book  Google Scholar 

  34. Sibner, L.: The isolated point singularity problem for the coupled Yang–Mills equations in higher dimensions. Math. Ann. 271(1), 125–131 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Székelyhidi, G.: The partial \(C^0\)-estimate along the continuity method. J. Am. Math. Soc. 29(2), 537–560 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, G., Viaclovsky, J.A.: Bach-flat asymptotically locally Euclidean metrics Invent. Math. 160(2), 357–415 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Tian, G., Viaclovsky, J.A.: Moduli spaces of critical Riemannian metrics in dimension four. Ad. Math. 196(2), 346–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, Y.: Regularity for the harmonic-Einstein equation. Adv. Math. 231(2), 680–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z.: Degeneration of shrinking Ricci solitons. Int. Math. Res. Not. IMRN 2010(21), 4137–4158 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author would like to thank Professor Aaron Naber for several useful discussions during this work. Both authors would like to thank BICMR of Peking University and Professor Gang Tian for constant support and encouragement. They also would like to thank the referee for valuable suggestions. The research is supported by the Engineering and Physical Sciences Research Council (EPSRC) on a Programme Grant entitled “Singularities of Geometric Partial Differential Equations” reference number EP/K00865X/1 and National Natural Science Foundation of China under grant (No.11501027), and Fundamental Research Funds for the Central Universities (Nos. 2015JBM103, 2014RC028, 2016JBM071 and 2016JBZ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshuai Jiang.

Additional information

Communicated by Ngaiming Mok.

Appendix: Kato inequality

Appendix: Kato inequality

In this appendix, we prove the improved Kato inequality in Lemma 5.8. The proof is the same as in [26]. For the reader’s convenience, we give a proof here. Let us recall Lemma 5.8

Lemma 6.1

(Kato inequality) Let (Mg) be a Riemmanian manifold with dimensional n. Then we have the follow Kato inequality:

$$\begin{aligned} (1+4\eta (n))\left| \nabla \right| \mathrm{Rm}\left| \right| ^2\le \left| \nabla \mathrm{Rm}\right| ^2+C(n)\left| \nabla \mathrm{Ric}\right| ^2, \end{aligned}$$
(6.1)

where \(\eta (n), C(n)\) are two universal constants.

Proof

The proof is essentially just a repeated application of the second Bianchi identity. For any fixed \(y\in M\), choose a normal coordinate such that \(|\nabla |\mathrm{Rm}||(y)=\partial _1 |\mathrm{Rm}|(y)\). Then at y, we have

$$\begin{aligned} \left| \nabla \left| \mathrm{Rm}\right| ^2\right| =\left| \partial _1\left| \mathrm{Rm}\right| ^2\right| =2\left| \langle \nabla _1\mathrm{Rm},\mathrm{Rm}\rangle \right| \le 2\left( \sum _{ijkl}R_{ijkl,1}^2\right) ^{1/2}\left( \sum _{ijkl}R_{ijkl}^2\right) ^{1/2}\,. \end{aligned}$$
(6.2)

To prove the lemma, it suffices to show \((1+\sigma (n))\sum _{ijkl}R_{ijkl,1}^2\le \sum _{ijklp}R_{ijkl,p}^2+C(n)\sum _{ijp}Rc_{ij,p}^2\) for some dimensional constant \(\sigma (n)\) and C(n). In fact, it suffices to show \(\sum _{ijkl}R_{ijkl,1}^2\le C(n)\left( \sum _{ijkl}\sum _{p\ge 2}R_{ijkl,p}^2+\sum _{ijp}Rc_{ij,p}^2 \right) :=C(n)\Xi \). Hence we only need to prove \(R_{\alpha \beta \gamma \delta ,1}^2\le C(n)\Xi \) for any fixed \(\alpha ,\beta ,\gamma ,\delta =1,\ldots ,n\).

Case 1: For \(\alpha ,\beta ,\gamma ,\delta \ge 2\), then by second Bianchi identity and Cauchy inequality, we have

$$\begin{aligned} R_{\alpha \beta \gamma \delta ,1}^2=\left( R_{\alpha \beta \delta 1,\gamma }+R_{\alpha \beta 1\gamma ,\delta }\right) ^2\le 2\left( R_{\alpha \beta \delta 1,\gamma }^2+R_{\alpha \beta 1\gamma ,\delta }^2\right) \le 2\Xi \, . \end{aligned}$$
(6.3)

Case 2: For \(\alpha =1\) and \(\beta ,\gamma ,\delta \ge 2\), then by second Bianchi identity and Cauchy inequality, we have

$$\begin{aligned} R_{1\beta \gamma \delta ,1}^2=\left( (R_{1\beta \delta 1,\gamma }+R_{1\beta 1\gamma ,\delta }\right) ^2\le 2\left( R_{1\beta \delta 1,\gamma }^2+R_{1\beta 1\gamma ,\delta }^2\right) \le 2\Xi \, . \end{aligned}$$
(6.4)

Case 3: For \(\alpha =\delta =1\) and \(\beta ,\gamma \ge 2\), then by Cauchy inequality, we have

$$\begin{aligned} R_{1\beta \gamma 1,1}^2=\left( Rc_{\beta \gamma ,1}-\sum _{\alpha \ge 2}R_{\alpha \beta \gamma \alpha ,1}\right) ^2\le n\left( Rc_{\beta \gamma ,1}^2+\sum _{\alpha \ge 2}R_{\alpha \beta \gamma \alpha ,1}^2\right) \le n\left( \Xi +2\sum _{\alpha \ge 2}\Xi \right) \le n(2n-1)\Xi \, , \end{aligned}$$
(6.5)

where we have used the estimates in Case 1 to the second inequality.

Thus, by the symmetric relations of curvature tensor, we have proved \(R_{\alpha \beta \gamma \delta ,1}^2\le C(n)\Xi \). Hence, we prove \(\sum _{ijkl}R_{ijkl,1}^2\le C(n)\left( \sum _{ijkl}\sum _{p\ge 2}R_{ijkl,p}^2+\sum _{ijp}Rc_{ij,p}^2 \right) \). This finishes the proof of Lemma 5.8. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Jiang, W. Regularity and compactness of harmonic-Einstein equations. Math. Ann. 370, 937–962 (2018). https://doi.org/10.1007/s00208-017-1523-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1523-5

Navigation