Skip to main content
Log in

On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider a nonlocal equation set in an unbounded domain with the epigraph property. We prove symmetry, monotonicity and rigidity results. In particular, we deal with halfspaces, coercive epigraphs and epigraphs that are flat at infinity. These results can be seen as the nonlocal counterpart of the celebrated article (Berestycki et al., Commun Pure Appl Math 50(11):1089–1111, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In order to apply Corollary 4.5 in [41], we observe that assumptions (4.7), (4.8) and (4.10) therein have been already verified. As far as (4.9) is concerned, we recall that as exponent \(\eta >0\) associated to \((-\Delta )^s\) we have to take a positive small number (see [41, Section 2]). Then, for any \(x \in \mathbb {R}^N \setminus B_{r_j}(q_j)\), it results that

    $$\begin{aligned} A \left( 2 \left| 2 \frac{x-q_j}{r_j}\right| ^\eta -1 \right) \geqslant A \left( 2^{1+\eta } -1 \right) \geqslant A \geqslant z^+(x), \end{aligned}$$

    i.e. assumption (4.9) holds.

References

  1. Bañuelos, R., Bogdan, K.: Symmetric stable processes in cones. Potential Anal. 21(3), 263–288 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrios, B., Del Pezzo, L., García-Melián, J., Quaas, A.: Monotonicity of solutions for some nonlocal elliptic problems in half-spaces. arXiv:1606.01061 (2016, preprint)

  3. Barrios, B., Montoro, L., Sciunzi, B.: On the moving plane method for nonlocal problems in bounded domains. arXiv:1405.5402 (2014, preprint)

  4. Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 69–94 (1998), 1997. Dedicated to Ennio De Giorgi

  5. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun. Pure Appl. Math. 50(11), 1089–1111 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22(1), 1–37 (1991)

  7. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123(1), 43–80 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Cinti, E.: Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete Contin. Dyn. Syst. 28(3), 1179–1206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabré, X., Cinti, E.: Sharp energy estimates for nonlinear fractional diffusion equations. Calc. Var. Partial Differ. Equ. 49(1–2), 233–269 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 23–53 (2014)

  11. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367(2), 911–941 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. (2) 174(2), 1163–1187 (2011)

  15. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. arXiv:1411.1697 (2014, preprint)

  16. Cortázar, C., Elgueta, M., García-Melián, J.: Nonnegative solutions of semilinear elliptic equations in half-spaces. J. Math. Pures Appl. (9) 106(5), 866–876 (2016)

  17. Dalibard, A.-L., Gérard-Varet, D.: On shape optimization problems involving the fractional Laplacian. ESAIM Control Optim. Calc. Var. 19(4), 976–1013 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dancer, E.N.: Some remarks on half space problems. Discrete Contin. Dyn. Syst. 25(1), 83–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dávila, J., Dupaigne, L., Wei, J.: On the fractional Lane-Emden equation. Trans. Am. Math. Soc. arXiv:1404.3694 (2014, in press)

  20. Dipierro, S., Montoro, L., Peral, I., Sciunzi, B.: Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy–Leray potential. Calc. Var. Partial Differ. Equ. 55(4), 55–99 (2016)

  21. Dipierro, S., Savin, O., Valdinoci, E.: A nonlocal free boundary problem. SIAM J. Math. Anal. 47(6), 4559–4605 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dipierro, S., Soave, N., Valdinoci, E.: On fractional elliptic equations in Lipschitz sets and epigraphs: Regularity, monotonicity and rigidity results. http://www.wias-berlin.de/preprint/2256/wias_preprints_2256 (2016, preprint)

  23. Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb. Sect. A 93(1–2), 1–14 (1982/1983)

  24. Fall, M.M., Jarohs, S.: Overdetermined problems with fractional Laplacian. ESAIM Control Optim. Calc. Var. 21(4), 924–938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fall, M.M., Weth, T.: Monotonicity and nonexistence results for some fractional elliptic problems in the half-space. Commun. Contemp. Math. 18(1), 1550012, 25 (2016)

  26. Farina, A., Sciunzi, B.: Qualitative properties and classification of nonnegative solutions to \(-\Delta u = f(u)\). arXiv:1405.3428 (2014, preprint)

  27. Farina, A., Soave, N.: Symmetry and uniqueness of nonnegative solutions of some problems in the halfspace. J. Math. Anal. Appl. 403(1), 215–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fazly, M., Wei, J.: On stable solutions of the fractional Henon–Lane–Emden equation. Commun. Contemp. Math. 18(5), 1650005, 24 (2016)

  29. Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian. Commun. Contemp. Math. 16(1), 1350023, 24 (2014)

  30. Greco, A., Servadei, R.: Hopf’s lemma and constrained radial symmetry for the fractional Laplacian. https://www.ma.utexas.edu/mp_arc/c/14/14-69 (2014, preprint)

  31. Grubb, G.: Local and nonlocal boundary conditions for \(\mu \)-transmission and fractional elliptic pseudodifferential operators. Anal. PDE 7(7), 1649–1682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jarohs, S.: Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets. NoDEA Nonlinear Differ. Equ. Appl. 23(3), 22, Art. 32 (2016)

  34. Li, D., Li, Z.: Some overdetermined problems for the fractional Laplacian equation on the exterior domain and the annular domain. Nonlinear Anal. TMA 139, 196–210 (2016)

  35. Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Partial Differ. Equ. 52(3–4), 641–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ros-Oton, X., Serra, J.: Boundary regularity estimates for nonlocal elliptic equations in \(C^1\) domains. arXiv:1512.07171 (2015, preprint)

  37. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165(11), 2079–2154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101(3), 275–302 (2014)

  39. Savin, O., Valdinoci, E.: \(\Gamma \)-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(4), 479–500 (2012)

  40. Savin, O., Valdinoci, E.: Some monotonicity results for minimizers in the calculus of variations. J. Funct. Anal. 264(10), 2469–2496 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soave, N., Valdinoci, E.: Overdetermined problems for the fractional Laplacian in exterior or annular sets. J. Anal. Math. arXiv:1412.5074 (2014, in press)

Download references

Acknowledgments

In a preliminary version of this paper (see [22]), the proof of Lemma 3.2 was unnecessarily complicated: we are indebted to Mouhamed Moustapha Fall for the simpler argument that we incorporated in the present version of this paper. Part of this work was carried out while Serena Dipierro and Enrico Valdinoci were visiting the Justus-Liebig-Universität Giessen, which they wish to thank for the hospitality. This work has been supported by the Alexander von Humboldt Foundation, the ERC grant 277749 E.P.S.I.L.O.N. “Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities”, the PRIN grant 201274FYK7 “Aspetti variazionali e perturbativi nei problemi differenziali nonlineari” and the ERC grant 339958 Com.Pat. “Complex Patterns for Strongly Interacting Dynamical Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Soave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipierro, S., Soave, N. & Valdinoci, E. On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results. Math. Ann. 369, 1283–1326 (2017). https://doi.org/10.1007/s00208-016-1487-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1487-x

Navigation