Skip to main content

Advertisement

Log in

Weighted interpolation inequalities: a perturbation approach

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study optimal functions in a family of Caffarelli–Kohn–Nirenberg inequalities with a power-law weight, in a regime for which standard symmetrization techniques fail. We establish the existence of optimal functions, study their properties and prove that they are radial when the power in the weight is small enough. Radial symmetry up to translations is true for the limiting case where the weight vanishes, a case which corresponds to a well-known subfamily of Gagliardo–Nirenberg inequalities. Our approach is based on a concentration-compactness analysis and on a perturbation method which uses a spectral gap inequality. As a consequence, we prove that optimal functions are explicit and given by Barenblatt-type profiles in the perturbative regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anzellotti, G., Baldo, S.: Asymptotic development by \(\Gamma \)-convergence. Appl. Math. Optim. 27, 105–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  MATH  Google Scholar 

  3. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    MATH  Google Scholar 

  4. Betta, M.F., Brock, F., Mercaldo, A., Posteraro, M.R.: A weighted isoperimetric inequality and applications to symmetrization. J. Inequal. Appl. 4(3), 215–240 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Hardy-Poincaré inequalities and applications to nonlinear diffusions. Comptes Rendus Mathématique 344, 431–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Ration. Mech. Anal. 191, 347–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107, 16459–16464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonforte, M., Dolbeault, J., Muratori, M., Nazaret, B.: Weighted fast diffusion equations (Part I): sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli–Kohn–Nirenberg inequalities. Kinet. Relat. Models (2016). Preprint hal-01279326. arXiv:1602.08319 (to appear)

  9. Bonforte, M., Dolbeault, J., Muratori, M., Nazaret, B.: Weighted fast diffusion equations (Part II): sharp asymptotic rates of convergence in relative error by entropy methods. Kinet. Relat. Models (2016). Preprint hal-01279327. arXiv:1602.08315 (to appear)

  10. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Composit. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  11. Catrina, F., Wang, Z.Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chou, K.S., Chu, C.W.: On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. 48, 137–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Del Pino, M., Dolbeault, J., Filippas, S., Tertikas, A.: A logarithmic Hardy inequality. J. Funct. Anal. 259, 2045–2072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Denzler, J., McCann, R.J.: Phase transitions and symmetry breaking in singular diffusion. Proc. Natl. Acad. Sci. USA 100, 6922–6925 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Denzler, J., McCann, R.J.: Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology. Arch. Ration. Mech. Anal. 175, 301–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dolbeault, J., Esteban, M., Tarantello, G., Tertikas, A.: Radial symmetry and symmetry breaking for some interpolation inequalities. Calc. Var. Partial Differ. Equ. 42, 461–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolbeault, J., Esteban, M.J.: About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations, Abel Symposia, vol. 7, pp. 117–130. Springer, Berlin (2012)

    Chapter  Google Scholar 

  19. Dolbeault, J., Esteban, M.J.: Extremal functions for Caffarelli–Kohn–Nirenberg and logarithmic Hardy inequalities. Proc. R. Soc. Edinb. Sect. A 142, 745–767 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolbeault, J., Esteban, M.J.: A scenario for symmetry breaking in Caffarelli–Kohn–Nirenberg inequalities. J. Numer. Math. 20, 233–249 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Dolbeault, J., Esteban, M.J.: Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations. Nonlinearity 27, 435–465 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolbeault, J., Esteban, M.J., Filippas, S., Tertikas, A.: Rigidity results with applications to best constants and symmetry of Caffarelli–Kohn–Nirenberg and logarithmic Hardy inequalities. Calc. Var. Partial Differ. Equ. 54(3), 2465–2481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dolbeault, J., Esteban, M.J., Loss, M.: Symmetry of extremals of functional inequalities via spectral estimates for linear operators. J. Math. Phys. 53, 095204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dolbeault, J., Esteban, M.J., Loss, M.: Rigidity versus symmetry breaking via nonlinear flows on cylinders and euclidean spaces. Inventiones mathematicae, pp. 1–44 (2016)

  25. Dolbeault, J., Esteban, M.J., Loss, M., Muratori, M.: Symmetry for extremal functions in subcritical Caffarelli–Kohn–Nirenberg inequalities. To appear in Comptes Rendus Mathématique. Preprint hal-01318727. arXiv:1605.06373

  26. Dolbeault, J., Esteban, M.J., Loss, M., Tarantello, G.: On the symmetry of extremals for the Caffarelli–Kohn–Nirenberg inequalities. Adv. Nonlinear Stud. 9, 713–726 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Dolbeault, J., Esteban, M.J., Tarantello, G.: The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli–Kohn–Nirenberg inequalities, in two space dimensions. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7, 313–341 (2008)

  28. Dolbeault, J., Toscani, G.: Improved interpolation inequalities, relative entropy and fast diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 917–934 (2013)

  29. Felli, V., Schneider, M.: Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type. J. Differ. Equ. 191, 121–142 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gagliardo, E.: Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7, 102–137 (1958)

    MathSciNet  MATH  Google Scholar 

  31. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^{n}\). In: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, pp. 369–402. Academic Press, New York (1981)

  32. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  33. Grillo, G., Muratori, M.: Sharp short and long time \(L^\infty \) bounds for solutions to porous media equations with homogeneous Neumann boundary conditions. J. Differ. Equ. 254, 2261–2288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grillo, G., Muratori, M.: Sharp asymptotics for the porous media equation in low dimensions via Gagliardo–Nirenberg inequalities. Riv. Math. Univ. Parma (N.S.) 5, 15–38 (2014)

  35. Grillo, G., Muratori, M., Porzio, M.M.: Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete Contin. Dyn. Syst. 33, 3599–3640 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Horiuchi, T.: Best constant in weighted Sobolev inequality with weights being powers of distance from the origin. J. Inequal. Appl. 1, 275–292 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Lin, C.S., Wang, Z.Q.: Symmetry of extremal functions for the Caffarelli–Kohn–Nirenberg inequalities. Proc. Am. Math. Soc. 132, 1685–1691 (2004)

    Article  MATH  Google Scholar 

  38. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

  39. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

  40. Moser, J.: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14, 577–591 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moser, J.: On a pointwise estimate for parabolic differential equations. Commun. Pure Appl. Math. 24, 727–740 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  42. Muratori, M.: Weighted functional inequalities and nonlinear diffusions of porous medium type. Ph.D. thesis, Politecnico di Milano and Université Paris I Panthéon-Sorbonne (2015). https://hal.archives-ouvertes.fr/tel-01289874

  43. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  44. Pucci, P., Serrin, J.: Uniqueness of ground states for quasilinear elliptic operators. Indiana Univ. Math. J. 47(2), 501–528 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Reyes, G., Vázquez, J.L.: The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions. Commun. Pure. Appl. Anal. 7, 1275–1294 (2008)

    MathSciNet  Google Scholar 

  46. Reyes, G., Vázquez, J.L.: Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Commun. Pure Appl. Anal. 8, 493–508 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Smets, D., Willem, M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differ. Equ. 18, 57–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

J.D. has been supported by the ANR projects NoNAP, STAB and Kibord. B.N. has been supported by the ANR project STAB. M.M. thanks Alessandro Zilio for a very helpful discussion concerning the regularity theory for the Euler–Lagrange equation. M.M. has been partially funded by the “Università Italo-Francese/Université Franco-Italienne” (Bando Vinci 2013). The authors thank Guillaume Carlier for pointing them Ref. [1]. They thank the referees for their careful reading which helped them to improve the manuscript. © 2016 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolbeault, J., Muratori, M. & Nazaret, B. Weighted interpolation inequalities: a perturbation approach. Math. Ann. 369, 1237–1270 (2017). https://doi.org/10.1007/s00208-016-1480-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1480-4

Mathematics Subject Classification

Navigation