Skip to main content
Log in

Isothermic triangulated surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We found a class of triangulated surfaces in Euclidean space which have similar properties as isothermic surfaces in Differential Geometry. We call a surface isothermic if it admits an infinitesimal isometric deformation preserving the mean curvature integrand locally. We show that this class is Möbius invariant. Isothermic triangulated surfaces can be characterized either in terms of circle patterns or based on conformal equivalence of triangle meshes. This definition generalizes isothermic quadrilateral meshes. A consequence is a discrete analog of minimal surfaces. Here the Weierstrass data needed to construct a discrete minimal surface consist of a triangulated plane domain and a discrete harmonic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bobenko, A., Hertrich-Jeromin, U., Lukyanenko, I.: Discrete constant mean curvature nets in space forms: Steiners formula and christoffel duality. Discrete Comput. Geom. 52(4), 612–629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobenko, A., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. (2) 164(1), 231–264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A.I., Pinkall, U.: Discretization of surfaces and integrable systems. In: Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., vol. 16, pp. 3–58. Oxford University Press, New York (1999)

  5. Bobenko, A.I., Pinkall, U., Springborn, B.A.: Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19(4), 2155–2215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko, A.I., Pottmann, H., Wallner, J.: A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348(1), 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobenko, A.I., Schrder, P.: Discrete willmore flow. In: Desbrun, M., Pottmann, H. (eds.) Eurographics Symposium on Geometry Processing, pp. 101–110 (2005)

  8. Bobenko, A.I., Suris, Y.B.: Isothermic surfaces in sphere geometries as Moutard nets. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2088), 3171–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable Structure, Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008)

    Book  MATH  Google Scholar 

  10. Bohle, C., Peters, G.P., Pinkall, U.: Constrained Willmore surfaces. Calc. Var. Partial Differ. Eq. 32(2), 263–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. In: Differential Geometry and Integrable Systems (Tokyo, 2000), Contemp. Math., vol. 308, pp. 39–61.American Mathematical Society, Providence (2002)

  12. Burstall, F.E., Hertrich-Jeromin, U., Rossman, W.: Lie geometry of linear Weingarten surfaces. C. R. Math. Acad. Sci. Paris 350(7–8), 413–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cieśliński, J., Goldstein, P., Sym, A.: Isothermic surfaces in \({\mathbf{E}}^3\) as soliton surfaces. Phys. Lett. A 205(1), 37–43 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Connelly, R.: Rigidity. In: Handbook of Convex Geometry, vol. A, B, pp. 223–271. North-Holland, Amsterdam (1993)

  15. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: Discrete Differential Geometry, Oberwolfach Semin., vol. 38, pp. 287–324. Birkhäuser, Basel (2008)

  16. Duffin, R.J.: Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldberg, M.: Unstable polyhedral structures. Math. Mag. 51(3), 165–170 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heawood, P.: Map-color theorem. Q. J Pure Appl. Math. 24, 332–338 (1890)

    MATH  Google Scholar 

  19. Hertrich-Jeromin, U.: Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  20. Hertrich-Jeromin, U., Hoffmann, T., Pinkall, U.: A discrete version of the Darboux transform for isothermic surfaces. In: Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., vol. 16, pp. 59–81. Oxford University Press, New York (1999)

  21. Hoffmann, T., Sageman-Furnas, A.O., Wardetzky, M.: A discrete parametrized surface theory in \({\mathbb{R}}^3\) (2014). arXiv:1412.7293

  22. Hougardy, S., Lutz, F.H., Zelke, M.: Polyhedral of genus 2 with 10 vertices and minimal coordinates. Electronic Geometry Model No. 2005.08.001 (2007)

  23. Izmestiev, I.: Projective background of the infinitesimal rigidity of frameworks. Geom. Dedic. 140, 183–203 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jessen, B.: Orthogonal icosahedra. Nordisk Mat. Tidskr. 15, 90–96 (1967)

    MathSciNet  MATH  Google Scholar 

  25. Kamberov, G., Norman, P., Pedit, F., Pinkall, U.: Quaternions, Spinors, and Surfaces, Contemporary Mathematics, vol. 299. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  26. Kamberov, G., Pedit, F., Pinkall, U.: Bonnet pairs and isothermic surfaces. Duke Math. J. 92(3), 637–644 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lam, W.Y.: Discrete minimal surfaces: critical points of the area functional from integrable systems (2015). arXiv:1510.08788

  28. Lam, W.Y., Pinkall, U.: Holomorphic vector fields and quadratic differentials on planar triangular meshes. In: Bobenko, A.I. (ed.) Advances in Discrete Differential Geometry. Springer, Berlin (2016) arXiv:1506.08099 (to appear)

  29. Luo, F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. MacNeal, R.H.: The solution of partial differential equations by means of electrical networks. Ph.D. thesis, Caltech (1946)

  31. Pedit, F., Pinkall, U.: Quaternionic analysis on Riemann surfaces and differential geometry. Proc. Int. Congr. Math. II, 389–400 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Pottmann, H., Eigensatz, M., Vaxman, A., Wallner, J.: Architectural geometry. Comput. Graph. 47, 145–164 (2015)

    Article  Google Scholar 

  33. Richter, J.: Conformal maps of a Riemann surface into space of quaternions. Ph.D. thesis, TU Berlin (1997)

  34. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schief, W.K., Bobenko, A.I., Hoffmann, T.: On the integrability of infinitesimal and finite deformations of polyhedral surfaces. In: Discrete Differential Geometry, Oberwolfach Semin., vol. 38, pp. 67–93. Birkhäuser, Basel (2008)

  36. Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke Math. J. 86(2), 347–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Smirnov, S.: Discrete complex analysis and probability. Proceedings of the International Congress of Mathematicians. vol. I, pp. 595–621. Hindustan Book Agency, New Delhi (2010)

  38. Smyth, B.: Soliton surfaces in the mechanical equilibrium of closed membranes. Commun. Math. Phys. 250(1), 81–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 77:1–77:11 (2008)

  40. Sullivan, J.M.: Curvatures of smooth and discrete surfaces. In: Discrete Differential Geometry, Oberwolfach Semin., vol. 38, pp. 175–188. Birkhäuser, Basel (2008)

  41. Wallner, J., Pottmann, H.: Infinitesimally flexible meshes and discrete minimal surfaces. Monatsh. Math. 153(4), 347–365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Whiteley, W.: Rigidity and scene analysis. In: Handbook of Discrete and Computational Geometry, CRC Press Ser. Discrete Math. Appl., pp. 893–916. CRC, Boca Raton (1997)

Download references

Acknowledgments

The first author would like to thank Alexander Bobenko and Thomas Banchoff for their inspiring lectures.

Compliance with ethical standards The authors declare that they have no conflict of interest and this article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Yeung Lam.

Additional information

Communicated by Ngaiming Mok.

This research was supported by the DFG Collaborative Research Centre SFB/TRR 109 Discretization in Geometry and Dynamics. The first author was partially supported by Berlin Mathematical School and the Croucher Foundation of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, W.Y., Pinkall, U. Isothermic triangulated surfaces. Math. Ann. 368, 165–195 (2017). https://doi.org/10.1007/s00208-016-1424-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1424-z

Mathematics Subject Classification

Navigation