Skip to main content
Log in

Instantaneous shrinking and single point extinction for viscous Hamilton–Jacobi equations with fast diffusion

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For a large class of non-negative initial data, the solutions to the quasilinear viscous Hamilton–Jacobi equation \(\partial _t u-\Delta _p u+|\nabla u|^q=0\) in \((0,\infty )\times \mathbb {R}^N\) are known to vanish identically after a finite time when \(2N/(N+1)<p\le 2\) and \(q\in (0,p-1)\). Further properties of this extinction phenomenon are established herein: instantaneous shrinking of the support is shown to take place if the initial condition \(u_0\) decays sufficiently rapidly as \(|x|\rightarrow \infty \), that is, for each \(t>0\), the positivity set of u(t) is a bounded subset of \(\mathbb {R}^N\) even if \(u_0>0\) in \(\mathbb {R}^N\). This decay condition on \(u_0\) is also shown to be optimal by proving that the positivity set of any solution emanating from a positive initial condition decaying at a slower rate as \(|x|\rightarrow \infty \) is the whole \(\mathbb {R}^N\) for all times. The time evolution of the positivity set is also studied: on the one hand, it is included in a fixed ball for all times if it is initially bounded (localization). On the other hand, it converges to a single point at the extinction time for a class of radially symmetric initial data, a phenomenon referred to as single point extinction. This behavior is in sharp contrast with what happens when q ranges in \([p-1,p/2)\) and \(p\in (2N/(N+1),2]\) for which we show complete extinction. Instantaneous shrinking and single point extinction take place in particular for the semilinear viscous Hamilton–Jacobi equation when \(p=2\) and \(q\in (0,1)\) and seem to have remained unnoticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullaev, U.G.: Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation. Math. Notes 63(3), 285–292 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreucci, D., Tedeev, A.F., Ughi, M.: The Cauchy problem for degenerate parabolic equations with source and damping. Ukr. Math. Bull. 1, 1–23 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Ben-Artzi, M., Souplet, Ph., Weissler, F.B.: The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces. J. Math. Pures Appl. 81, 343–378 (2002)

  4. Benachour, S., Karch, G., Laurençot, Ph.: Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations. J. Math. Pures Appl. 83, 1275–1308 (2004)

  5. Benachour, S., Laurençot, Ph.: Global solutions to viscous Hamilton–Jacobi equations with irregular initial data. Comm. Partial Differ. Equations 24(11–12), 1999–2021 (1999)

  6. Benachour, S., Laurençot, Ph., Schmitt, D.: Extinction and decay estimates for viscous Hamilton-Jacobi equations in \(\mathbb{R}^N\). Proc. Am. Math. Soc. 130(4), 1103–1111 (2001)

  7. Benachour, S., Laurençot, Ph., Schmitt, D., Souplet, Ph.: Extinction and non-extinction for viscous Hamilton-Jacobi equations in \(\mathbb{R}^N\). Asympt. Anal. 31, 229–246 (2002)

  8. Benachour, S., Roynette, B., Vallois, P.: Asymptotic estimates of solutions of \(u_t-\frac{1}{2}\Delta u=-|\nabla u|\) in \(\mathbb{R}_{+}\times {\mathbb{R}}^{d}\), \(d\ge 2\). J. Funct. Anal. 144, 301–324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bidaut-Véron, M.-F., Dao, N.A.: \(L^\infty \) estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms. Nonlinear Anal. 91, 121–152 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Biler, P., Guedda, M., Karch, G.: Asymptotic properties of solutions of the viscous Hamilton–Jacobi equation. J. Evol. Equations 4, 75–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borelli, M., Ughi, M.: The fast diffusion equation with strong absorption: the instantaneous shrinking phenomenon. Rend. Ist. Mat. Univ. Trieste 26, 109–140 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Degtyarev, S.P.: Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption. Sb. Math. 199(4), 511–538 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. del Pino, M., Saéz, M.: Asymptotic description of vanishing in a fast-diffusion equation with absorption. Differential Integral Equations 15(8), 1009–1023 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Evans, L.C., Knerr, B.F.: Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities. Ill. J. Math. 23(1), 153–166 (1979)

    MATH  MathSciNet  Google Scholar 

  15. Ferreira, R., Galaktionov, V.A., Vázquez, J.L.: Uniqueness of asymptotic profiles for an extinction problem. Nonlinear Anal. 50(4), 495–507 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ferreira, R., Vázquez, J.L.: Extinction behaviour for fast diffusion equations with absorption. Nonlinear Anal. 43(8), 943–985 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friedman, A., Herrero, M.A.: Extinction properties of semilinear heat equations with strong absorption. J. Math. Anal. Appl. 124(2), 530–546 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34(2), 425–447 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gallay, Th, Laurençot, Ph.: Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent. Indiana Univ. Math. J. 56, 459–479 (2007)

  20. Gilding, B.H., Guedda, M., Kersner, R.: The Cauchy problem for \(u_t = \Delta u + |\nabla u|^q\). J. Math. Anal. Appl. 284, 733–755 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gilding, B.H., Kersner, R.: Instantaneous shrinking in nonlinear diffusion-convection. Proc. Am. Math. Soc. 109(2), 385–394 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gilding, B.H.: The Cauchy problem for \(u_t = \Delta u + |\nabla u|^q\), large-time behaviour. J. Math. Pures Appl. 84, 753–785 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Herrero, M.A., Velázquez, J.J.L.: On the dynamics of a semilinear heat equation with strong absorption. Comm. Partial Differ. Equations 14(12), 1653–1715 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Herrero, M.A., Velázquez, J.J.L.: Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption. J. Math. Anal. Appl. 170, 353–381 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iagar, R., Laurençot, Ph.: Positivity, decay and extinction for a singular diffusion equation with gradient absorption. J. Funct. Anal. 262(7), 3186–3239 (2012)

  26. Kalashnikov, A.S.: Conditions for the instantaneous compactifications of carriers of solutions of semilinear parabolic equations and systems. Math. Notes 47(1–2), 49–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kalashnikov, A.S.: Quasilinear degenerate parabolic equations with singular lowest terms and growing initial data. Differ. Equations 29(6), 857–866 (1993)

    MathSciNet  Google Scholar 

  28. Kersner, R., Nicolosi, F.: The nonlinear heat equation with absorption: effects of variable coefficients. J. Math. Anal. Appl. 170(2), 551–566 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kersner, R., Shishkov, A.: Instantaneous shrinking of the support of energy solutions. J. Math. Anal. Appl. 198(3), 729–750 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Laurençot, Ph.: Large time behavior for diffusive Hamilton-Jacobi equations. In: Topics in Mathematical Modeling, Lecture Notes, vol. 4. Jindrich Necas Center for Mathematical Modeling, Praha (2008)

Download references

Acknowledgments

RI is partially supported by the Spanish Project MTM2012-31103 and the Severo Ochoa Excellence Projects SEV-2011-0087 and SEV-2015-0554 (MINECO). CS acknowledges the support of the Carl Zeiss foundation. Part of this work was done while CS held a one month invited position at the Institut de Mathématiques de Toulouse, and during visits of RI to the Institut de Mathématiques de Toulouse. Both authors would like to express their gratitude for the support and hospitality. The authors would like to thank the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Gabriel Iagar.

Appendix: Proofs of Lemma 8.2 and gradient estimates for \(p=2\)

Appendix: Proofs of Lemma 8.2 and gradient estimates for \(p=2\)

In this technical section we provide a fully rigorous proof of Lemma 8.2, as well as a gradient estimate for solutions to (1.1) for \(p=2\). The latter, besides of its interest as an independent result, provides an essential technical tool in the proofs of our main results, and complements the gradient estimates in [25, Theorem 1.3], valid for \(p\in (p_c,2)\).

Lemma 8.2 was proved in Sect. 8 at a formal level, presenting the essential calculations that give the ideas and essence of the proof, but allowing us at that point, for the simplicity of the exposition, to use results such as the maximum principle (or comparison principle) that are not automatically granted when we deal with singular coefficients. This is why we include the rigorous proof of this lemma here. To this end, we introduce a regularization of (1.1), already successfully used by the authors in [25, Sect. 6], in order to avoid the difficulties coming from the singularity at points where \(\nabla u=0\). Let then u be a solution to the Cauchy problem (1.1)–(1.2) associated to an initial condition \(u_0\) satisfying the assumptions (a)–(c) of Theorem 1.4. We recall that u vanishes identically after a finite time \(T_e\) and that its positivity set \(\mathcal {P}(t)\) is included in \(B(0,R_0)\) for all \(t\ge 0\), see (8.1).

For \(\varepsilon \in (0,1/2)\), we define:

$$\begin{aligned} a_{\varepsilon }(z):=(z+\varepsilon ^2)^{(p-2)/2}, \quad b_{\varepsilon }(z):=(z+\varepsilon ^2)^{q/2}, \quad z\ge 0, \end{aligned}$$
(9.1)

and consider the following Cauchy problem:

$$\begin{aligned} \left\{ \begin{array}{ll}\partial _t \tilde{u}_{\varepsilon }-\mathrm{div}\left( a_{\varepsilon }(|\nabla \tilde{u}_{\varepsilon }|^2)\nabla \tilde{u}_{\varepsilon }\right) +b_{\varepsilon }\left( |\nabla \tilde{u}_{\varepsilon }|^2\right) -\varepsilon ^q =0, \quad (t,x)\in (0,\infty )\times \mathbb {R}^N, \\ \tilde{u}_{\varepsilon }(0)= u_{0, \varepsilon } +\varepsilon ^{\gamma },\quad x\in \mathbb {R}^N,\end{array}\right. \end{aligned}$$
(9.2)

where \(\gamma \in (0,p/4)\cap (0,q/2)\) is a small positive parameter such that \(\gamma <\min \{p-1,1-q\}\) and \(u_{0,\varepsilon }\in C^{\infty }(\mathbb {R}^N)\) is a non-negative smooth approximation of the initial condition \(u_0\), in the sense that \((u_{0,\varepsilon },\nabla u_{0,\varepsilon })\) converge to \((u_0,\nabla u_0)\) uniformly on compact sets in \(\mathbb {R}^N\) and satisfy

$$\begin{aligned} 0 \le u_{0,\varepsilon } \le \Vert u_0\Vert _{\infty }, \quad \Vert \nabla u_{0,\varepsilon }\Vert _{\infty }\le (1+C(u_0)\varepsilon )\Vert \nabla u_0\Vert _{\infty }. \end{aligned}$$
(9.3)

It is proved in [5] and [25, Sect. 6] that (9.2) has a unique classical solution \(\tilde{u}_\varepsilon \) and that, as \(\varepsilon \rightarrow 0\), it is an approximation of the solution u to (1.1)–(1.2) with initial condition \(u_0\) in the following sense:

$$\begin{aligned} u(t,x)=\lim \limits _{\varepsilon \rightarrow 0} \tilde{u}_{\varepsilon }(t,x), \quad \nabla u(t,x)=\lim \limits _{\varepsilon \rightarrow 0}\nabla \tilde{u}_{\varepsilon }(t,x), \end{aligned}$$
(9.4)

for almost every \((t,x)\in (0,\infty )\times \mathbb {R}^N\), the first convergence being actually uniform in compact sets of \((0,\infty )\times \mathbb {R}^N\). In addition, if \(u_0\) is radially symmetric and non-increasing, then \(u_{0,\varepsilon }\) can be chosen to be radially symmetric and non-increasing as well, so that \(x\mapsto \tilde{u}_\varepsilon (t,x)\) is radially symmetric and non-increasing for any \(t\ge 0\) and \(\varepsilon \in (0,1/2)\). We next define

$$\begin{aligned} u_\varepsilon (t,x) := \tilde{u}_\varepsilon (t,x) - \varepsilon ^q t, \quad (t,x)\in (0,\infty )\times \mathbb {R}^N, \end{aligned}$$

and observe that the comparison principle and (9.2) imply that

$$\begin{aligned} u_\varepsilon (t,x) \ge \varepsilon ^\gamma - \varepsilon ^q t \ge \frac{\varepsilon ^\gamma }{2}, \quad (t,x)\in (0,\tau _\varepsilon )\times \mathbb {R}^N, \end{aligned}$$
(9.5)

with \(\tau _\varepsilon := \varepsilon ^{\gamma -q}/2\) and that \(u_\varepsilon \) solves

$$\begin{aligned} \left\{ \begin{array}{ll}\partial _t u_{\varepsilon }-\mathrm{div}\left( a_{\varepsilon }(|\nabla u_{\varepsilon }|^2)\nabla u_{\varepsilon }\right) +b_{\varepsilon }\left( |\nabla u_{\varepsilon }|^2\right) =0, \quad (t,x)\in (0,\infty )\times \mathbb {R}^N, \\ u_{\varepsilon }(0)= u_{0,\varepsilon } +\varepsilon ^{\gamma },\quad x\in \mathbb {R}^N.\end{array}\right. \end{aligned}$$
(9.6)

Since \(\tau _\varepsilon \rightarrow \infty \) as \(\varepsilon \rightarrow 0\), we may assume that \(\varepsilon \) is taken sufficiently small to ensure \(T_e\le \tau _\varepsilon \). With these approximations in mind, we are ready to give the complete proof of Lemma 8.2 as well as that of the gradient estimate (5.4) for \(p=2\).

1.1 Proof of Lemma 8.2

Owing to the convergence properties of \(u_{0,\varepsilon }\) and its gradient there holds

$$\begin{aligned} m_\varepsilon := \varepsilon + \Vert u_{0,\varepsilon } - u_0 \Vert _{C^1(B(0,R_0))} \mathop {\longrightarrow }_{\varepsilon \rightarrow 0} 0. \end{aligned}$$
(9.7)

Introducing

$$\begin{aligned} r_\varepsilon := \min \{ r \in [0,R_0) \, : \, u_0 (r) \le m_\varepsilon ^{1/4} \}, \end{aligned}$$

the properties of \(u_0\) assumed in Theorem 1.4 and (9.7) ensure that there is \(\varepsilon _0 \in (0, 1/2)\) such that

$$\begin{aligned} r_\varepsilon > s_\varepsilon := m_\varepsilon ^{(p-1-q)/4(p-q)} \;\; \text { and }\;\; m_\varepsilon \in (0,1) \;\;\text { for any }\;\; \varepsilon \in (0,\varepsilon _0). \end{aligned}$$
(9.8)

We then infer from the radial monotonicity of \(u_0\), (1.12), (9.7), and (9.8) that, for \(r\in [s_\varepsilon ,r_\varepsilon ]\),

$$\begin{aligned} |\partial _r u_{0,\varepsilon }(r)|&\ge |\partial _r u_0(r)| - m_\varepsilon \\&\ge \delta _0 r^{1/(p-1-q)} u_0(r)^{1/(p-q)} - m_\varepsilon \\&\ge \frac{\delta _0}{2} r^{1/(p-1-q)} u_{0,\varepsilon }^{1/(p-q)}(r) + \frac{\delta _0}{2} r^{1/(p-1-q)} \left( u_0^{1/(p-q)} - u_{0,\varepsilon }^{1/(p-q)} \right) (r) \\&\quad + \frac{\delta _0}{2} m_\varepsilon ^{1/2(p-q)} - m_\varepsilon \\&\ge \frac{\delta _0}{2} r^{1/(p-1-q)} u_{0,\varepsilon }^{1/(p-q)}(r) - \frac{\delta _0}{2} R_0^{1/(p-1-q)} m_\varepsilon ^{1/(p-q)} {+} \frac{\delta _0}{2} m_\varepsilon ^{1/2(p-q)} {-} m_\varepsilon \\&\ge \frac{\delta _0}{2} r^{1/(p-1-q)} u_{0,\varepsilon }^{1/(p-q)}(r) \\&\quad + m_\varepsilon ^{1/2(p-q)} \left( \frac{\delta _0}{2} - \frac{\delta _0}{2} R_0^{1/(p-1-q)} m_\varepsilon ^{1/2(p-q)} - m_\varepsilon ^{(2(p-q)-1)/ 2(p-q)} \right) . \end{aligned}$$

Since \(p-q>1\), we infer from (9.7) and the above inequality that, taking \(\varepsilon _0\) smaller if necessary, there holds

$$\begin{aligned} |\partial _r u_{0,\varepsilon } (r)| \ge \frac{\delta _0}{2} r^{1/(p-q-1)} u_{0,\varepsilon } (r)^{1/(p-q)}, \quad r \in [s_\varepsilon , r_\varepsilon ], \quad \varepsilon \in (0,\varepsilon _0). \end{aligned}$$
(9.9)

Now fix \(\varepsilon \in (0, \varepsilon _0)\). Recalling that \(a_\varepsilon \) and \(b_\varepsilon \) are given by (9.1), we define

$$\begin{aligned} a_{1,\varepsilon }(z) := 2 z a_\varepsilon '(z) + a_\varepsilon (z), \quad z\ge 0, \end{aligned}$$

and the auxiliary function

$$\begin{aligned} J_\varepsilon (t,r):= & {} r^{N-1} a_\varepsilon (|\partial _r u_\varepsilon (t,r)|^2) \partial _r u_\varepsilon (t,r)\\&+ c(r) F(u_\varepsilon (t,r)), \quad (t,r) \in (0,T_e)\times (0,R_0). \end{aligned}$$

Since \(u_\varepsilon \) solves (9.6) and

$$\begin{aligned} (p-1) a_\varepsilon (z) \le \ a_{1,\varepsilon }(z)&= (z+\varepsilon ^2)^{(p-4)/2} [(p-1)z+\varepsilon ^2] \le a_\varepsilon (z), \\ b_\varepsilon (z) - 2zb_\varepsilon '(z)&= (z+\varepsilon ^2)^{(q-2)/2} [(1-q) z + \varepsilon ^2] \ge (1-q) b_\varepsilon (z) \end{aligned}$$

for \(z\ge 0\), we may perform the same computations as in the proof of Lemma 8.2 with \((a_\varepsilon ,b_\varepsilon )\) instead of (ab) and derive the analogue of (8.7):

$$\begin{aligned} \partial _t J_\varepsilon - a_{1,\varepsilon }(g_\varepsilon ^2) \partial _r^2 J_\varepsilon + \left( \frac{N-1}{r} a_{1,\varepsilon }(g_\varepsilon ^2) - 2 b_\varepsilon '(g_\varepsilon ^2)g_\varepsilon \right) \partial _ r J_\varepsilon \le \sum _{i=1}^3 \mathcal {R}_{i,\varepsilon }, \end{aligned}$$
(9.10)

where \(g_\varepsilon := - \partial _r u_\varepsilon \ge 0\) and

$$\begin{aligned} \mathcal {R}_{1,\varepsilon }&:= 2 \left[ (N-1) r^{N-2}a_\varepsilon (g_\varepsilon ^2) g_\varepsilon - c'(r) F(u_\varepsilon ) \right] b_\varepsilon '(g_\varepsilon ^2) g_\varepsilon , \\ \mathcal {R}_{2,\varepsilon }&:= \left[ \frac{N-1}{r} c'(r) - c''(r) \right] F(u_\varepsilon ) a_{1,\varepsilon }(g_\varepsilon ^2), \\ \mathcal {R}_{3,\varepsilon }&:= 2 \left[ c'(r) - \frac{N-1}{r} c(r) \right] F'(u_\varepsilon ) a_{1,\varepsilon }(g_\varepsilon ^2) g_\varepsilon - c(r) F''(u_\varepsilon ) a_{1,\varepsilon }(g_\varepsilon ^2) g_\varepsilon ^2 \\&\quad \;\; - (1-q) c(r) F'(u_\varepsilon ) b_\varepsilon (g_\varepsilon ^2). \end{aligned}$$

Observe that the positivity (9.5) of \(u_\varepsilon \) guarantees that \(F'(u_\varepsilon )\) and \(F''(u_\varepsilon )\) are well-defined, even if F is not twice differentiable at zero. As in the proof of Lemma 8.2 we choose

$$\begin{aligned} c(r) = r^\lambda , \quad r\ge 0, \quad F(z) = \delta z^\beta , \quad z\ge 0, \end{aligned}$$

where \(\delta >0\) is to be determined and

$$\begin{aligned} \lambda = N + \frac{q}{p-1-q} > N, \quad \beta = \frac{p-1}{p-q}\in (0,1). \end{aligned}$$

With this choice,

$$\begin{aligned} \mathcal {R}_{2,\varepsilon } \le - \lambda (\lambda -N) \delta (p-1) r^{\lambda -2} u_\varepsilon ^\beta a_{\varepsilon }(g_\varepsilon ^2), \end{aligned}$$
(9.11)

while

$$\begin{aligned} \mathcal {R}_{1,\varepsilon } = 2 r^{\lambda -1} b_\varepsilon '(g_\varepsilon ^2) g_\varepsilon \left[ (N-1) r^{N-1-\lambda } a_\varepsilon (g_\varepsilon ^2) g_\varepsilon - \delta \lambda u_\varepsilon ^\beta \right] \end{aligned}$$
(9.12)

and

$$\begin{aligned} \mathcal {R}_{3,\varepsilon }&\le \beta \delta \left[ \frac{2(\lambda -N+1)}{r} \left( g_\varepsilon ^2 + \varepsilon ^2 \right) ^{(p-1-q)/2} + \frac{1-\beta }{u_\varepsilon } \left( g_\varepsilon ^2 + \varepsilon ^2 \right) ^{(p-q)/2} \right. \nonumber \\&\quad - (1-q) \Big ] r^\lambda u_\varepsilon ^{\beta -1} b_\varepsilon (g_\varepsilon ^2). \end{aligned}$$
(9.13)

Now let \(\kappa > 0\) and define

$$\begin{aligned} \mathcal {J}_{\kappa ,\varepsilon } := \{ (t,r)\in (0,T_e)\times (0,R_0)\ :\ J_\varepsilon (t,r) \ge \kappa \}. \end{aligned}$$

Then

$$\begin{aligned} \kappa + r^{N-1} a_\varepsilon (g_\varepsilon ^2) g_\varepsilon \le c(r) F(u_\varepsilon ) = \delta r^\lambda u_\varepsilon ^\beta \;\;\text { in }\;\; \mathcal {J}_{\kappa ,\varepsilon }, \end{aligned}$$

from which we deduce that, if \(\kappa \ge R_0^{N-1} \varepsilon ^{p-1}\), then

$$\begin{aligned} r^{N-1} (g_\varepsilon ^2 + \varepsilon ^2 )^{(p-1)/2} \le r^{N-1} a_\varepsilon (g_\varepsilon ^2) g_\varepsilon + R_0^{N-1} \varepsilon ^{p-1} \le \delta r^\lambda u_\varepsilon ^\beta \;\;\text { in }\;\; \mathcal {J}_{\kappa ,\varepsilon }. \end{aligned}$$
(9.14)

This inequality implies in particular that \(r>0\) and \(u_\varepsilon >0\) in \(\mathcal {J}_{\kappa ,\varepsilon }\) and (9.11) yields

$$\begin{aligned} {\mathcal {R}_{2,\varepsilon }} \le - \lambda (\lambda -N)\delta (p-1) r^{\lambda -2} u_\varepsilon ^\beta \left( g_\varepsilon ^2 + \varepsilon ^2 \right) ^{(p-2)/2} <0 \;\;\text { in }\;\; \mathcal {J}_{\kappa ,\varepsilon } \end{aligned}$$
(9.15)

in view of \(\lambda >N\) and \(p \in (1,2]\). We then infer from (9.12), (9.13), and (9.14) that, in \(\mathcal {J}_{\kappa ,\varepsilon }\),

$$\begin{aligned} \mathcal {R}_{1,\varepsilon } \le - 2 (\lambda -N+1) \delta r^{\lambda -1} u_\varepsilon ^\beta b_\varepsilon '(g_\varepsilon ^2) g_\varepsilon \le 0 \end{aligned}$$
(9.16)

and

$$\begin{aligned} \mathcal {R}_{3,\varepsilon }&\le \beta \delta \left[ 2(\lambda -N+1) \delta ^{(p-1-q)/(p-1)} \left( \Vert u_0\Vert _\infty +\varepsilon ^\gamma \right) ^{(p-1-q)/(p-q)} \right. \nonumber \\&\quad \left. + (1-\beta ) \delta ^{(p-q)/(p-1)} R_0^{(p-q)/(p-1-q)} - (1-q) \right] r^\lambda u_\varepsilon ^{\beta -1} b_\varepsilon (g_\varepsilon ^2) \nonumber \\&\le - \frac{\beta \delta (1-q)}{2} r^\lambda u_\varepsilon ^{\beta -1} b_\varepsilon (g_\varepsilon ^2) \le 0, \end{aligned}$$
(9.17)

provided \(\delta \) is chosen suitably small (depending on \(\Vert u_0\Vert _\infty \) and \(R_0\)) and independent of \(\varepsilon \in (0,\varepsilon _0)\) as \(\Vert u_0\Vert _\infty +\varepsilon ^\gamma \le \Vert u_0\Vert _\infty +1\). Collecting (9.10), (9.15), (9.16), and (9.17), we end up with

$$\begin{aligned} \partial _t J_\varepsilon - a_{1,\varepsilon }(g_\varepsilon ^2) \partial _r^2 J_\varepsilon + \left( \frac{N-1}{r} a_{1,\varepsilon }(g_\varepsilon ^2) - 2 b_\varepsilon '(g_\varepsilon ^2)g_\varepsilon \right) \partial _ r J_\varepsilon < 0, \end{aligned}$$
(9.18)

for \((t,r)\in \mathcal {J}_{\kappa ,\varepsilon }\), this inequality being true only for \(\kappa \ge R_0^{N-1} \varepsilon ^{p-1}\).

Next, introducing

$$\begin{aligned} M_\varepsilon := \sup _{t\in [0,T_e]} u_\varepsilon (t,R_0), \end{aligned}$$

we infer from the monotonicity of \(r\mapsto u_\varepsilon (t,r)\) that

$$\begin{aligned} J_\varepsilon (t,0)=0, \quad J_\varepsilon (t,R_0) \le \delta R_0^\lambda M_\varepsilon ^\beta , \quad t\in [0,T_e]. \end{aligned}$$
(9.19)

In addition, given \(r\in (0,R_0)\),

$$\begin{aligned} J_\varepsilon (0,r) \le r^{N-1} a_\varepsilon (|\partial _r u_{0,\varepsilon }(r)|^2) \partial _r u_{0,\varepsilon }(r) + \delta r^\lambda u_{0,\varepsilon }^\beta (r) + \delta R_0^\lambda \varepsilon ^{\gamma \beta }. \end{aligned}$$

As \(\partial _r u_{0,\varepsilon }(r) \le 0\), we obtain from (9.3) and (9.7) that

$$\begin{aligned} J_\varepsilon (0,r) \le \delta s_\varepsilon ^\lambda \Vert u_0 \Vert _\infty ^\beta + \delta R_0^\lambda \varepsilon ^{\gamma \beta }, \quad r \in (0,s_\varepsilon ), \end{aligned}$$
(9.20)

as well as

$$\begin{aligned} J_\varepsilon (0,r) \le \delta R_0^\lambda \left( m_\varepsilon + m_\varepsilon ^{1/4} \right) ^\beta + \delta R_0^\lambda \varepsilon ^{\gamma \beta }, \quad r \in (r_\varepsilon , R_0). \end{aligned}$$
(9.21)

For \(r \in [s_\varepsilon , r_\varepsilon ]\), we now divide the analysis into two regions with respect to the magnitude of \(|\partial _r u_{0,\varepsilon }(r)|\). Either \(|\partial _r u_{0,\varepsilon }(r)| \le \varepsilon \) and we deduce from (9.9) that

$$\begin{aligned} u_{0,\varepsilon }(r)^{1/(p-q)}\le \frac{2\varepsilon }{\delta _0}r^{-1/(p-q-1)}. \end{aligned}$$

Thus, taking also into account that \(\partial _r u_{0,\varepsilon }(r)\le 0\) for any \(r\ge 0\), we realize that

$$\begin{aligned} \begin{array}{ll} J_\varepsilon (0,r) &{} \le \delta r^\lambda (2 \varepsilon )^{p-1} \delta _0^{1-p} r^{-(p-1)/(p-1-q)} + \delta R_0^\lambda \varepsilon ^{\gamma \beta } \\ &{} \le \delta \delta _0^{1-p} R_0^{N-1} (2 \varepsilon )^{p-1} + \delta R_0^\lambda \varepsilon ^{\gamma \beta }. \end{array} \end{aligned}$$
(9.22)

Or \(|\partial _r u_{0,\varepsilon }(r)| > \varepsilon \) which implies that

$$\begin{aligned} a_\varepsilon (|\partial _r u_{0,\varepsilon }(r)|^2) \ge 2^{(p-2)/2} |\partial _r u_{0,\varepsilon }(r)|^{p-2}. \end{aligned}$$

Therefore, using again (9.9),

$$\begin{aligned} \begin{array}{ll} J_\varepsilon (0,r) &{} \le \delta r^\lambda u_{0,\varepsilon }(r)^\beta - 2^{(p-2)/2} r^{N-1} |\partial _r u_{0,\varepsilon }(r)|^{p-1} + \delta R_0^\lambda \varepsilon ^{\gamma \beta } \\ &{} \le \left( \delta - 2^{-p/2} \delta _0^{p-1} \right) r^\lambda u_{0,\varepsilon }(r)^\beta + \delta R_0^\lambda \varepsilon ^{\gamma \beta } \le \delta R_0^\lambda \varepsilon ^{\gamma \beta }, \end{array} \end{aligned}$$
(9.23)

provided \(\delta < 2^{-p/2} \delta _0^{p-1}\). In view of (9.8) and (9.20)–(9.23) we have thus shown that, if \(\delta \) is sufficiently small,

$$\begin{aligned} J_\varepsilon (0,r) \le \delta \delta _0^{1-p} R_0^{N-1} (2\varepsilon )^{p-1} + \delta \Vert u_0 \Vert _\infty ^\beta s_\varepsilon ^\lambda + \delta R_0^\lambda \left( {2^\beta m_\varepsilon ^{\beta /4}} + \varepsilon ^{\gamma \beta } \right) , \quad r\in (0,R_0). \end{aligned}$$

Consequently, if \(\delta \) is sufficiently small and

$$\begin{aligned} \kappa&= \kappa _\varepsilon \\&:= \delta \delta _0^{1-p} R_0^{N-1} (2\varepsilon )^{p-1} + \delta \Vert u_0 \Vert _\infty ^\beta s_\varepsilon ^\lambda + \delta R_0^\lambda \left( {2^\beta m_\varepsilon ^{\beta /4}} + \varepsilon ^{\gamma \beta } \right) \\&\quad + R_0^{N-1} \varepsilon ^{p-1} + \delta R_0^\lambda M_\varepsilon ^\beta , \end{aligned}$$

then the parabolic boundary \(\{0\}\times (0,R_0)\) and \([0,T_e) \times \{0,R_0\}\) of \((0,T_e)\times (0,R_0)\) contains no point in \(\mathcal {J}_{\kappa _\varepsilon ,\varepsilon }\). Recalling (9.18) we may then argue as in the proof of Lemma 8.2 to conclude that

$$\begin{aligned} J_\varepsilon \le \kappa _\varepsilon \;\;\text { in }\;\; (0,T_e)\times (0,R_0). \end{aligned}$$
(9.24)

To complete the proof, we observe that \(M_\varepsilon \rightarrow 0\) as \(\varepsilon \rightarrow 0\) due to the uniform convergence (9.4) and the vanishing of u on \((0,T_e)\times \partial B(0,R_0)\). Combining this fact with (9.7) and (9.8) yields

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \kappa _\varepsilon =0, \end{aligned}$$

and we may let \(\varepsilon \rightarrow 0\) in (9.24) and use (9.4) and (9.7) to obtain the expected result.

1.2 Proof of (5.4) for \(p=2\)

Finally, we prove the gradient estimate (5.4) for \(p=2\).

Proposition 9.1

Consider an initial condition \(u_0\) satisfying (1.3) and denote the corresponding solution to (1.1)–(1.2) by u. Assume further that \(p=2\) and \(q \in (0,1)\). Then there is \(C_1>0\) depending only on q such that

$$\begin{aligned} \left| \nabla u^{(1-q)/(2-q)}(t,x)\right| \le C_1\left( 1+\Vert u_0\Vert _{\infty }^{(1-q)/(2-q)}t^{-1/2}\right) , \end{aligned}$$
(9.25)

for \((t,x)\in (0,\infty )\times \mathbb {R}^N\).

Proof

We fix \(\varepsilon \in (0, 1/2)\) and denote the classical solution to (9.2) by \(\tilde{u}_\varepsilon \). Observe that \(a_\varepsilon \equiv 1\) due to \(p=2\). In view of (9.3), the comparison principle implies

$$\begin{aligned} \varepsilon ^\gamma \le \tilde{u}_\varepsilon (t,x) \le \Vert u_0 \Vert _\infty + \varepsilon ^\gamma , \quad (t,x) \in [0,\infty ) \times \mathbb {R}^N. \end{aligned}$$
(9.26)

We further set

$$\begin{aligned} f(\xi ) := \frac{1-q}{2-q} \xi ^{(2-q)/(1-q)}, \; \xi \ge 0, \quad v_\varepsilon := f^{-1} (\tilde{u}_\varepsilon ), \quad w_\varepsilon := |\nabla v_\varepsilon |^2, \end{aligned}$$

and note that \(f \in C^2([0,\infty )) \cap C^\infty ((0,\infty ))\) is strictly increasing. Hence, according to [5, Formula (10)], we have

$$\begin{aligned} \mathcal{P}_\varepsilon w_\varepsilon \le 2 \left( \frac{f^{\prime \prime }}{f^\prime } \right) ^\prime (v_\varepsilon ) w_\varepsilon ^2 - 2 \left( \frac{f^{\prime \prime }}{(f^\prime )^2} \right) (v_\varepsilon ) \Theta _\varepsilon \left( (f^\prime )^2 (v_\varepsilon ) w_\varepsilon \right) w_\varepsilon \end{aligned}$$
(9.27)

in \((0,\infty ) \times \mathbb {R}^N\), where

$$\begin{aligned} \mathcal{P}_\varepsilon w_\varepsilon&:= \partial _t w_\varepsilon - \Delta w_\varepsilon + 2 \left( f^\prime (v_\varepsilon ) b_\varepsilon ^\prime \left( (f^\prime )^2 (v_\varepsilon ) w_\varepsilon \right) - \left( \frac{f^{\prime \prime }}{f^\prime } \right) (v_\varepsilon ) \right) \nabla v_\varepsilon \cdot \nabla w_\varepsilon ,\\ \Theta _\varepsilon (\xi )&:= 2\xi b_\varepsilon ^\prime (\xi ) - b_\varepsilon (\xi ) + \varepsilon ^q, \quad \xi \ge 0. \end{aligned}$$

Since \(q \in (0,1)\), we have

$$\begin{aligned} \Theta _\varepsilon (\xi )&= q \xi (\xi + \varepsilon ^2)^{(q-2)/2} - (\xi + \varepsilon ^2)^{q/2} + \varepsilon ^q \\&= -(1-q) (\xi + \varepsilon ^2)^{q/2} - q \varepsilon ^2 (\xi + \varepsilon ^2)^{(q-2)/2} + \varepsilon ^q \\&\ge -(1-q) (\xi + \varepsilon ^2)^{q/2} + (1-q) \varepsilon ^q \\&\ge -(1-q) \xi ^{q/2}, \quad \xi \ge 0. \end{aligned}$$

Hence, (9.27), the choice of f, the nonnegativity of \(w_\varepsilon \), and Young’s inequality imply

$$\begin{aligned} \mathcal{P}_\varepsilon w_\varepsilon&\le - \frac{2}{(1-q) v_\varepsilon ^2} w_\varepsilon ^2 + 2 \frac{1}{1-q} v_\varepsilon ^{(q-2)/(1-q)} (1-q) \left( v_\varepsilon ^{2/(1-q)} w_\varepsilon \right) ^{q/2} w_\varepsilon \nonumber \\&\le - \frac{2}{(1-q) v_\varepsilon ^2} w_\varepsilon ^2 + \frac{2}{(1-q)v_\varepsilon ^2} w_\varepsilon ^{1+ q/2}\nonumber \\&\le \frac{2}{(1-q) v_\varepsilon ^2} \left( - w_\varepsilon ^2 + \frac{2+q}{4} w_\varepsilon ^2 + \frac{2-q}{4} \right) \nonumber \\&= - \frac{2-q}{2(1-q) v_\varepsilon ^2} \left( w_\varepsilon ^2 -1 \right) . \end{aligned}$$
(9.28)

Considering next

$$\begin{aligned} W(t) := 1 + \frac{a}{t}, \; t >0, \quad \text{ with } \; a := 2 \left( \frac{1-q}{2-q} \right) ^{q/(2-q)} (\Vert u_0\Vert _\infty +1)^{2(1-q)/(2-q)}, \end{aligned}$$

noticing that (9.26) implies

$$\begin{aligned} v_\varepsilon = \left( \frac{2-q}{1-q} \tilde{u}_\varepsilon \right) ^{(1-q)/(2-q)} \le \left( \frac{2-q}{1-q} (\Vert u_0\Vert _\infty +1) \right) ^{(1-q)/(2-q)}, \end{aligned}$$

and using the fact that \(a>0\), we obtain

$$\begin{aligned}&\mathcal{P}_\varepsilon W + \frac{2-q}{2(1-q) v_\varepsilon ^2} \left( W^2 -1 \right) \\&\quad \ge -\frac{a}{t^2} + \frac{2-q}{2(1-q) v_\varepsilon ^2} \cdot \frac{a^2}{t^2} \\&\quad \ge \frac{a}{t^2} \left[ -1 + \frac{a}{2} \left( \frac{2-q}{1-q} \right) ^{q/(2-q)} (\Vert u_0\Vert _\infty +1)^{-2(1-q)/(2-q)} \right] \ge 0 \end{aligned}$$

for any \(t>0\). Since \(w_\varepsilon (0,x) < W(0) = \infty \) for \(x \in \mathbb {R}^N\), we deduce from (9.28) and the comparison principle that

$$\begin{aligned} \left( \frac{2-q}{1-q} \right) ^{(1-q)/(2-q)} \left| \nabla \tilde{u}_\varepsilon ^{(1-q)/(2-q)} (t,x) \right| = |\nabla v_\varepsilon (t,x) | = w_\varepsilon ^{1/2} (t,x) \le \left( 1+ \frac{a}{t} \right) ^{1/2} \end{aligned}$$

in \((0,\infty ) \times \mathbb {R}^N\). Letting \(\varepsilon \searrow 0\) and recalling (9.4), we end up with (9.25).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iagar, R.G., Laurençot, P. & Stinner, C. Instantaneous shrinking and single point extinction for viscous Hamilton–Jacobi equations with fast diffusion. Math. Ann. 368, 65–109 (2017). https://doi.org/10.1007/s00208-016-1408-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1408-z

Mathematics Subject Classification

Navigation