Skip to main content
Log in

Blow-up behavior of solutions to a degenerate parabolic–parabolic Keller–Segel system

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Qualitative properties of solutions blowing up in finite time are obtained for a degenerate parabolic–parabolic Keller–Segel system, the nonlinear diffusion being of porous medium type with an exponent smaller or equal to the critical one \(m_c:=2(N-1)/N\). In both cases, it is shown that only type II blow-up is possible, that is, blow-up at the same rate as backward self-similar solutions never occurs. Further information on the generation of singularities induced by mass concentration are given in the critical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biler, P., Corrias, L., Dolbeault, J.: Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis. J. Math. Biol. 63, 1–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchet, A., Laurençot, Ph: Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Commun. Pure Appl. Anal. 11, 47–60 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001)

  6. Herrero, M.A., Velázquez, J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306, 583–623 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Discret. Contin. Dyn. Syst. Ser. B 18, 2569–2596 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishida, S., Ono, T., Yokota, T.: Possibility of the existence of blow-up solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Math. Methods Appl. Sci. 36, 745–760 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  12. Lamberton, D.: Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces \(L^p\). J. Funct. Anal. 72, 252–262 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire (pulished online 2015)

  14. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  15. Mizoguchi, N.: A new proof to finite-time blowup and no infinite-time blowup in doubly parabolic Keller–Segel system (preprint)

  16. Mizoguchi, N.: Type II blowup in the doubly parabolic Keller–Segel system in the two dimension (preprint)

  17. Mizoguchi, N.: Nonexistence of type I blowup solutions to parabolic–parabolic Keller–Segel system (preprint)

  18. Mizoguchi, N., Senba, T.: Refined asymptotics of blowup solutions to a simplified chemotaxis system (preprint)

  19. Mizoguchi, N., Souplet, Ph: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mizoguchi, N., Winkler, M.: Blow-up in the two-dimensional parabolic Keller–Segel system (preprint)

  21. Mizoguchi, N., Winkler, M.: Boundedness of global solutions in the two-dimensional parabolic Keller–Segel system (preprint)

  22. Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Raphaël, P., Schweyer, R.: On the stability of critical chemotactic aggregation. Math. Ann. 359, 267–377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schweyer, R.: Stable blow-up dynamic for the parabolic–parabolic Patlak–Keller-Segel model (preprint). arXiv:1403.4975

  25. Senba, T.: Type II blowup of solutions to a simplified Keller–Segel system in two dimensional domains. Nonlinear Anal. 66, 1817–1839 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Senba, T., Suzuki, T.: Applied Analysis: Mathematical Methods in Natural Science, 2nd edn. Imperial College Press, London (2011)

    MATH  Google Scholar 

  27. Sugiyama, Y.: On \(\varepsilon \)-regularity theorem and asymptotic behaviors of solutions for Keller–Segel systems. SIAM J. Math. Anal. 41, 1664–1692 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sugiyama, Y.: \(\varepsilon \)-regularity theorem and its application to the blow-up solutions of Keller–Segel systems in higher dimensions. J. Math. Anal. Appl. 364, 51–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Suzuki, T., Takahashi, R.: Degenerate parabolic equation with critical exponent derived from the kinetic theory, III, \(\varepsilon \)-regularity. Differ. Integral Equ. 25, 223–250 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Tanabe, H.: Functional Analytic Methods for Partial Differential Equations. Dekker, New York (1997)

    MATH  Google Scholar 

  32. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We warmly thank the referee for carefully reading the manuscript and relevant remarks. Ishige was partially supported by the JSPS Grant-in-Aid for Scientific Research (A) (No. 15H02058). Mizoguchi was partially supported by the JSPS Grant-in-Aid for Scientific Research (B) (No. 26287021) and by the JSPS Grant-in-Aid for Scientific Research (S) (No. 23224003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Mizoguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishige, K., Laurençot, P. & Mizoguchi, N. Blow-up behavior of solutions to a degenerate parabolic–parabolic Keller–Segel system. Math. Ann. 367, 461–499 (2017). https://doi.org/10.1007/s00208-016-1400-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1400-7

Mathematics Subject Classification

Navigation