Skip to main content
Log in

Deformations of nilpotent groups and homotopy symmetric \(C^*\)-algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The homotopy symmetric \(C^*\)-algebras are those separable \(C^*\)-algebras for which one can unsuspend in E-theory. We find a new simple condition that characterizes homotopy symmetric nuclear \(C^*\)-algebras and use it to show that the property of being homotopy symmetric passes to nuclear \(C^*\)-subalgebras and it has a number of other significant permanence properties. As an application, we show that if I(G) is the kernel of the trivial representation \(\iota :C^*(G)\rightarrow \mathbb {C}\) for a countable discrete torsion free nilpotent group G, then I(G) is homotopy symmetric and hence the Kasparov group KK(I(G), B) can be realized as the homotopy classes of asymptotic morphisms \([[I(G),B \otimes \mathcal {K}]]\) for any separable \(C^*\)-algebra B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Cheng, M.C.: Representation spaces for central extensions and almost commuting unitary matrices. Preprint 2015, mathematics. arXiv:1502.05092

  2. Blanchard, É.: Subtriviality of continuous fields of nuclear \(C^*\)-algebras. J. Reine Angew. Math. 489, 133–149 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Brown, N.P.: Herrero’s approximation problem for quasidiagonal operators. J. Funct. Anal. 186(2), 360–365 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Connes, A.: Noncommutative geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  5. Connes, A., Gromov, M., Moscovici, H.: Conjecture de Novikov et fibrés presque plats. C. R. Acad. Sci. Paris Sér. I Math. 310(5), 273–277 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Connes, A., Higson, N.: Déformations, morphismes asymptotiques et \({K}\)-théorie bivariante. C. R. Acad. Sci. Paris Sér. I Math. 311(2), 101–106 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Dadarlat, M.: On the asymptotic homotopy type of inductive limit \(C^*\)-algebras. Math. Ann. 297(4), 671–676 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dadarlat, M.: A note on asymptotic homomorphisms. K-Theory 8(5), 465–482 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dadarlat, M.: Shape theory and asymptotic morphisms for \({C}^*\)-algebras. Duke Math. J. 73(3), 687–711 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dadarlat, M.: Morphisms of simple tracially AF algebras. Intern. J. Math. 15(9), 919–957 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dadarlat, M.: Group quasi-representations and almost flat bundles. J. Noncommut. Geom. 8(1), 163–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrión, J.R., Dadarlat, M.: Almost flat K-theory of classifying spaces Preprint 2015, mathematics. arXiv:1503.06170

  13. Dadarlat, M., Loring, T.A.: \({K}\)-homology, asymptotic representations, and unsuspended \({E}\)-theory. J. Funct. Anal. 126(2), 367–383 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Echterhoff, S., Williams, D.P.: Crossed products by \(C_0(X)\)-actions. J. Funct. Anal. 158(1), 113–151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Green, P.: The structure of imprimitivity algebras. J. Funct. Anal. 36(1), 88–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higson, N., Kasparov, G.: \({E}\)-theory and \({K}{K}\)-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144(1), 23–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Houghton-Larsen, T.G., Thomsen, K.: Universal (co)homology theories. K-Theory 16(1), 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jennings, S.A.: The group ring of a class of infinite nilpotent groups. Can. J. Math. 7, 169–187 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kasparov, G.G.: Hilbert \(C^*\)-modules: theorems of Stinespring and Voiculescu. J. Oper. Theory 4, 133–150 (1980)

    MathSciNet  MATH  Google Scholar 

  20. Kasparov, G.G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kitaev, S.: Periodic table for topological insulators and superconductors. Preprint 2010, physics. arXiv:0901.2686

  22. Lee, S.T., Packer, J.A.: \(K\)-theory for \(C^*\)-algebras associated to lattices in Heisenberg Lie groups. J. Oper. Theory 41(2), 291–319 (1999)

    MathSciNet  Google Scholar 

  23. Loring, T.A.: \(K\)-theory and pseudospectra for topological insulators. Ann. Phys. 356, 383–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Packer, J.A., Raeburn, I.: On the structure of twisted group \(C^*\)-algebras. Trans. Am. Math. Soc. 334(2), 685–718 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Rieffel, M.A.: Deformation quantization for actions of \({ R}^d\). Memoirs of the American Mathematical Society, vol. 106, no. 506. American Mathematical Society, Providence (1993)

  26. Robinson, D.J.S.: A course in the theory of groups, vol. 80 of Graduate Texts in Mathematics, Second ed. edn. Springer, New York (1996)

    Google Scholar 

  27. Rørdam, M.: Classification of nuclear, simple \(C^*\)-algebras. Encyclopaedia Mathematical Sciences, vol. 126. Springer, Berlin (2002)

  28. Rosenberg, J.: The role of \(K\)-theory (San Francisco, California, 1981), vol. 10 of Contemporary Math., pp. 155–182. American Mathematical Society, Providence (1982)

  29. Tikuisis, A., White, S., Winter, W.: Quasidiagonality of nuclear C*-algebras, Preprint 2015, mathematics. arXiv:1509.08318

  30. Thomsen, K.: Discrete asymptotic homomorphisms in \(E\)-theory and \(KK\)-theory. Math. Scand. 92(1), 103–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Trout, J.: Asymptotic morphisms and elliptic operators over \(C^*\)-algebras. K-theory 18(3), 277–315 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Voiculescu, D.: A note on quasidiagonal \(C^*\)-algebras and homotopy. Duke Math. J. 62(2), 267–271 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Whitehead, G.W.: Elements of homotopy theory, Volume 61 of graduate texts in mathematics, Springer, New York (1978)

  34. Tu, J.-L.: The gamma element for groups which admit a uniform embedding into Hilbert space. In: Recent advances in operator theory, operator algebras, and their applications. Oper. Theory Adv. Appl., vol. 153, Birkhäuser, Basel, pp. 271–286 (2005)

  35. Yu, G.: The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Dadarlat.

Additional information

M.D. was partially supported by NSF Grant #DMS–1362824. U.P. was partially supported by the SFB 878—“Groups, Geometry & Actions”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadarlat, M., Pennig, U. Deformations of nilpotent groups and homotopy symmetric \(C^*\)-algebras. Math. Ann. 367, 121–134 (2017). https://doi.org/10.1007/s00208-016-1379-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1379-0

Mathematics Subject Classification

Navigation