Skip to main content
Log in

Realizing the analytic surgery group of Higson and Roe geometrically part II: relative \(\eta \)-invariants

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We apply the geometric analog of the analytic surgery group of Higson and Roe to the relative \(\eta \)-invariant. In particular, by solving a Baum–Douglas type index problem, we give a “geometric” proof of a result of Keswani regarding the homotopy invariance of relative \(\eta \)-invariants. The starting point for this work is our previous constructions in “Realizing the analytic surgery group of Higson and Roe geometrically, Part I: The geometric model”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For definitions see below in Sect. 2.3.

  2. Compare with Remark 4.3.

References

  1. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry II. Math. Proc. Camb. Philos. Soc. 78, 405–432 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry III. Math. Proc. Camb. Philos. Soc. 79, 71–99 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonini, P., Azzali, S., Skandalis, G.: Flat bundles, von Neumann algebras and \(K\)-theory with \(R/Z\)-coefficients. J. \(K\)-Theory 13(2), 275–303 (2014)

  5. Basu, D.: \(K\)-theory with R/Z coefficients and von Neumann algebras. \(K\)-theory 36, 327–343 (2005)

  6. Baum, P., Douglas, R.: \(K\)-homology and index theory. In: Kadison, R (ed.) Proceedings of Symposia in Pure Math Operator Algebras and Applications of AMS, vol. 38, pp. 117–173, Providence RI (1982)

  7. Baum, P., Douglas, R.: Index theory, bordism, and \(K\)-homology. Contemp. Math. 10, 1–31 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baum, P., van Erp, E.: \(K\)-homology and index theory on contact manifolds. Acta Math. 213(1), 1–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baum, P., Higson, N., Schick, T.: On the equivalence of geometric and analytic \(K\)-homology. Pure Appl. Math. Q. 3, 1–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benameur, M.-T., Piazza, P.: Index, \(\eta \) and \(\rho \) invariants on foliated bundles. Astérisque 327, 199–284 (2009)

  11. Benameur, M.-T., Roy, I.: Leafwise homotopies and Hilbert-Poincare complexes I. J. Noncommut. Geom. 8(3), 789–836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benameur, M.-T., Roy, I.: The Higson–Roe exact sequence and \(l^2\)-\(\eta \) invariants. J. Funct. Anal. 268(4), 974–1031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blackadar, B.: Operator algebras. Theory of \(C^{*}\)-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-commutative Geometry, III. Springer, Berlin, pp. xx+517 (2006)

  14. Booß-Bavnbek, B., Wojciechowski, K.P.: Elliptic boundary problems for Dirac operators. In: Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, pp. xviii+307 (1993)

  15. Deeley, R.J.: \(\mathbb{R}/\mathbb{Z}\)-valued index theory via geometric \(K\)-homology. Münster J. of Math. 7, 697–729 (2014)

  16. Deeley, R.J.: Analytic and topological index maps with values in the \(K\)-theory of mapping cones. arXiv:1302.4296

  17. Deeley, R., Goffeng, M.: Realizing the analytic surgery group of Higson and Roe geometrically, Part I: The geometric model. To appear in J. Homotopy Relat. Struct. arXiv:1308.5990

  18. Fomenko, A.T., Miscenko, A.S.: The index of elliptic operators over \(C^{*}\)-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43(4), 831–859, 967 (1979)

  19. Guentner, E.: \(K\)-homology and the index theorem, Index theory and operator algebras (Boulder, CO, 1991), pp. 47–66. Contemp. Math., 148, Amer. Math. Soc., Providence, RI (1993)

  20. Higson, N., Roe, J.: Mapping surgery to analysis I: analytic signatures. \(K\)-theory 33, 277–299 (2005)

  21. Higson, N., Roe, J.: Mapping surgery to analysis II: Geometric signatures. \(K\)-theory 33, 301–325 (2005)

  22. Higson, N, Roe, J.: Mapping surgery to analysis III: Exact sequences. \(K\)-theory 33, 325–346 (2005)

  23. Higson, N., Roe, J.: \(K\)-homology, assembly and rigidity theorems for relative \(\eta \)-invariants. Pure Appl. Math. Q. (Special Issue: In honor of Michael Atiyah and Isadore Singer) 6(2), 555–601 (2010)

  24. Hilsum, M.: Bordism invariance in \(KK\)-theory. Math. Scand. 107(1), 73–89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karoubi, M.: \(K\)-theory: an introduction. Springer, Berlin Heidelberg New York (1978)

    Book  MATH  Google Scholar 

  26. Keswani, N.: Geometric \(K\)-homology and controlled paths. N. Y. J. Math. 5, 53–81 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Keswani, N.: Relative \(\eta \)-invariants and \(C^{*}\)-algebra \(K\)-theory. Topology 39, 957–983 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Keswani, N.: Von Neumann \(\eta \)-theory. J. Lond. Math. Soc. (2) 62(3), 771–783 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leichtnam, E., Piazza, P.: Dirac index classes and the noncommutative spectral flow. J. Funct. Anal. 200(2), 348–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Leichtnam, E., Piazza, P.: Spectral sections and higher Atiyah–Patodi–Singer index theory on Galois coverings. Geom. Funct. Anal. 8(1), 17–58 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mathai, V.: On the homotopy invariance of reduced \(\eta \) and other signature type invariants, preprint

  32. Melrose, R.B., Piazza, P.: Families of Dirac operators, boundaries and the b-calculus. J. Differ. Geom. 46(1), 99–180 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Neumann, W.: Signature related invariants of manifolds I: monodromy and \(\gamma \)-invariants. Topology 18, 147–172 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Piazza, P., Schick, T.: Bordism, rho-invariants and the Baum–Connes conjecture. J. Noncommut. Geom. 1(1), 27–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ramachandran, M.: Von Neumann index theorems for manifolds with boundary. J. Differ. Geom. 38, 315–349 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Raven, J.: An equivariant bivariant chern character, PhD Thesis, Pennsylvania State University, 2004. (available online at the Pennsylvania State Digital Library)

  37. Schick, T.: \(L^2\)-index theorems, \(KK\)-theory, and connections. N. Y. J. Math. 11, 387–443 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Wahl, C.: Higher rho-invariants and the surgery structure set. J. Topol. 6(1), 154–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weinberger, S.: Homotopy invariance of \(\eta \)-invariants. Proc. Nat. Acad. Sci. 85, 5362–5365 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, F.: The noncommutative spectral flow, unpublished preprint (1997)

Download references

Acknowledgments

The authors wish to express their gratitude towards Heath Emerson, Nigel Higson, and Thomas Schick for discussions. They also thank the Courant Centre of Göttingen, the Leibniz Universität Hannover and the Graduiertenkolleg 1463 (Analysis, Geometry and String Theory) for facilitating this collaboration. The authors also thank the referee for a number of useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. Deeley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeley, R.J., Goffeng, M. Realizing the analytic surgery group of Higson and Roe geometrically part II: relative \(\eta \)-invariants. Math. Ann. 366, 1319–1363 (2016). https://doi.org/10.1007/s00208-016-1364-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1364-7

Navigation