Skip to main content
Log in

Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb {R}^d\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove optimal estimates for the decay in time of solutions to a rather general class of non-local in time subdiffusion equations in \(\mathbb {R}^d\). An important special case is the time-fractional diffusion equation, which has seen much interest during the last years, mostly due to its applications in the modeling of anomalous diffusion processes. We follow three different approaches and techniques to study this particular case: (A) estimates based on the fundamental solution and Young’s inequality, (B) Fourier multiplier methods, and (C) the energy method. It turns out that the decay behaviour is markedly different from the heat equation case, in particular there occurs a critical dimension phenomenon. The general subdiffusion case is treated by method (B) and relies on a careful estimation of the underlying relaxation function. Several examples of kernels, including the ultraslow diffusion case, illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorland, C., Schonbek, M.E.: Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14, 241–260 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Brändle, C., de Pablo, A.: Decay estimates for linear and nonlinear nonlocal heat equations. Available online at arXiv:1312.4661v1

  3. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L., Vazquez, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29, 1393–1404 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics 28, 113–130 (1999)

    Article  Google Scholar 

  6. Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 86, 271–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clément, P., Nohel, J.A.: Abstract linear and nonlinear Volterra equations preserving positivity. SIAM J. Math. Anal. 10, 365–388 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clément, P., Nohel, J.A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12, 514–534 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dräger, J., Klafter, J.: Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 84, 5998–6001 (2000)

    Article  Google Scholar 

  10. Duoandikoetxea, J., Zuazua, E.: Moments, masses de Dirac et décomposition de fonctions. C. R. Acad. Sci. Paris Sér. I Math. 315, 693–698 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Eidelman, S.E., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199, 211–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. John Wiley & Sons Inc, New York (1971)

    MATH  Google Scholar 

  13. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, London (2004)

  14. Gripenberg, G.: Volterra integro-differential equations with accretive nonlinearity. J. Differ. Equ. 60, 57–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 34. Cambridge University Press, Cambridge (1990)

  16. Ignat, L.I., Rossi, J.D.: Decay estimates for nonlocal problems via energy methods. J. Math. Pures Appl. 92, 163–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jakubowski, V.G.: Nonlinear elliptic-parabolic integro-differential equations with \(L_1\)-data: existence, uniqueness, asymptotics. Dissertation, University of Essen (2001)

  18. Kilbas, A.A., Saigo, M.: H-Transforms: Theory and Application. CRC Press, LLC, Boca Raton (2004)

    Book  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

  20. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kochubei, A.N.: Fractional-order diffusion. Differ. Equ. 26, 485492 (1990)

    MathSciNet  Google Scholar 

  22. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory 71, 583–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, Y., Zhang, F., Changpin, L.: The asymptotics of the solutions to the anomalous diffusion equations. Comput. Math. Appl. 66, 682–692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Fractional Cauchy problems on bounded domains. Ann. Probab. 37, 979–1007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakagawa, J., Sakamoto, K., Yamamoto, M.: Overview to mathematical analysis for fractional diffusion equations new mathematical aspects motivated by industrial collaboration. J. Math. Ind. 2(2010A–10), 99–108 (2010)

  28. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prüss, J.: Evolutionary Integral Equations and Applications. Monographs in Mathematics, vol. 87. Birkhäuser, Basel (1993)

  30. Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser Verlag, Basel (2007)

  31. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

  32. Schiessel, H., Sokolov, I.M., Blumen, A.: Dynamics of a polyampholyte hooked around an obstacle. Phys. Rev. E 56, R2390–R2393 (1997)

    Article  Google Scholar 

  33. Schilling, R., Song, R., Vondracek, Z.: Bernstein Functions. Theory and Applications. Studies in Mathematics, vol. 37. De Gruyter, Berlin (2010)

  34. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sinai, Y.G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256–268 (1982)

    Article  MathSciNet  Google Scholar 

  36. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd rev. and enl. edn. Johann Ambrosius Barth Verlag, Heidelberg (1995)

  37. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Volume 1 Background and Theory. Nonlinear Physical Science, Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  38. Vazquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16, 769–803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vergara, V., Zacher, R.: Lyapunov functions and convergence to steady state for differential equations of fractional order. Math. Z. 259, 287–309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vergara, V., Zacher, R.: Optimal decay estimates for time-fractional and other non-local subdiffusion equations via energy methods. SIAM J. Math. Anal. 47, 210–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zacher, R.: A De Giorgi-Nash type theorem for time fractional diffusion equations. Math. Ann. 356, 99–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zacher, R.: Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients. J. Math. Anal. Appl. 348, 137–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zacher, R.: Maximal regularity of type \(L_p\) for abstract parabolic Volterra equations. J. Evol. Equ. 5, 79–103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zuazua, E.: Large time asymptotics for heat and dissipative wave equations. Manuscript available at http://www.uam.es/enrique.zuazua (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Zacher.

Additional information

J. Kemppainen, J. Siljander and R. Zacher were partially supported by Academy of Finland project 138738 (Nonlinear PDEs, project lead by professor Juha Kinnunen). J. Siljander was supported by Academy of Finland postdoctoral research Grant 259363. V. Vergara was partially supported by FONDECYT Grant 1150230. R. Zacher was supported by a Heisenberg fellowship of the German Research Foundation (DFG), GZ Za 547/3-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemppainen, J., Siljander, J., Vergara, V. et al. Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb {R}^d\) . Math. Ann. 366, 941–979 (2016). https://doi.org/10.1007/s00208-015-1356-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1356-z

Mathematics Subject Classification

Navigation