Skip to main content
Log in

Quantization of the Laplacian operator on vector bundles, I

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let (Eh) be a holomorphic, Hermitian vector bundle over a polarized manifold. We provide a canonical quantization of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of E. If E is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Alternatively, one can prove by induction that \(\mathrm {tr}(A^2)=\frac{ 4 (k+i+1)! (i+1)! (k-i) ! i! }{ (k!)^2 (2i+2)!}\).

References

  1. Bouche, T.: Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble) 40(1), 117–130 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, H.-D., Keller, J.: On the Calabi problem: a finite-dimensional approach. J. Eur. Math. Soc. (JEMS) 15(3), 1033–1065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Catlin, D.:The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), pp. 1–23 (1999)

  4. Della Vedova, A.: A note on Berezin-Toeplitz quantization of the Laplace operator. arXiv:1505.03990 (2015)

  5. Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59(3), 479–522 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Donaldson, S.K.: Some numerical results in complex differential geometry. Special Issue: In honor of Friedrich Hirzebruch. Part 1. Pure Appl. Math. Q. 5(2), 571–618 (2009)

  7. Donaldson, S.K.: Remarks on gauge theory, complex geometry and 4-manifold topology, fields Medallists’ lectures, pp. 384–403 (1997)

  8. Fine, J.: Calabi flow and projective embeddings. With an appendix by Kefeng Liu and Xiaonan Ma. J. Differ. Geom. 84(3), 489–523 (2010)

  9. Fine, J.: Quantization and the Hessian of Mabuchi energy. Duke Math. J. 161(14), 2753–2798 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grinberg, E.L.: Spherical harmonics and integral geometry on projective spaces. Trans. Am. Math. Soc. 279(1), 187–203 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keller, J.: Ricci iterations on Kähler classes. J. Inst. Math. Jussieu 8(4), 743–768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, K., Ma, X.: A remark on: Some numerical results in complex differential geometry. arXiv:math/0512625 by S. K. Donaldson. Math. Res. Lett. 14(2), 165–171 (2007)

  13. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Am. J. Math. 122(2), 235–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  16. Griffiths, P., Harris, J.: Principles of algebraic geometry, Wiley Classics Library. John Wiley & Sons Inc., New York (1994) (Reprint of the 1978 original)

  17. Wang, X.: Balance point and stability of vector bundles over a projective manifold. Math. Res. Lett. 9(2–3), 393–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, X.: Canonical metrics on stable vector bundles. Comm. Anal. Geom. 13(2), 253–285 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zelditch, S.: Szegő kernels and a thm of Tian. Int. Math. Res. Notices 6, 317–331 (1998). doi:10.1155/S107379289800021X

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, S.: Heights and reductions of semi-stable varieties. Compos. Math. 104(1), 77–105 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is very grateful to Joel Fine for illuminating conversations on the subject of balanced embeddings throughout the years. Furthermore the second author wants to thank him for the numerous conversations they had and for generously sharing his ideas with him. The work of the first author has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR). The first author was also partially supported by supported by the ANR Project EMARKS, Decision No ANR-14-CE25-0010. The second author was supported by an AFR Ph.D. Grant from the Fonds National de la Recherche Luxembourg, and acknowledges travel support from the Communauté française de Belgique via an ARC and from the Belgian federal government via the PAI “Dygest”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Keller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, J., Meyer, J. & Seyyedali, R. Quantization of the Laplacian operator on vector bundles, I. Math. Ann. 366, 865–907 (2016). https://doi.org/10.1007/s00208-015-1355-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1355-0

Mathematics Subject Classification

Navigation