Skip to main content
Log in

Norms of roots of trinomials

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The behavior of norms of roots of univariate trinomials \(z^{s+t} + p z^t + q \in \mathbb {C}[z]\) for fixed support \(A = \{0,t,s+t\} \subset \mathbb {N}\) with respect to the choice of coefficients \(p,q \in \mathbb {C}\) is a classical late 19th and early 20th century problem. Although algebraically characterized by P. Bohl in 1908, the geometry and topology of the corresponding parameter space of coefficients had yet to be revealed. Assuming s and t to be coprime we provide such a characterization for the space of trinomials by reinterpreting the problem in terms of amoeba theory. The roots of given norm are parameterized in terms of a hypotrochoid curve along a \(\mathbb {C}\)-slice of the space of trinomials, with multiple roots of this norm appearing exactly on the singularities. As a main result, we show that the set of all trinomials with support A and certain roots of identical norm, as well as its complement can be deformation retracted to the torus knot \(K(s+t,s)\), and thus are connected but not simply connected. An exception is the case where the t-th smallest norm coincides with the \((t+1)\)-st smallest norm. Here, the complement has a different topology since it has fundamental group \(\mathbb {Z}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adamchik, V.S., Jeffrey, D.J.: Polynomial transformations of Tschirnhaus, Bring and Jerrard. SIGSAM Bull. 37(3), 90–94 (2003)

    Article  MATH  Google Scholar 

  2. Arnold, V.I.: Certain topological invariants of algebraic functions. Trudy Moskov. Mat. Obšč. 21, 27–46 (1970)

    Google Scholar 

  3. Artin, E.: Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4(1), 47–72 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biernaky, M.: Sur un nouveau théorème d’Algèbre. C.R. Acad. Sci. 177, 1193–1194 (1923) (in French)

  5. Bohl, P.: Zur Theorie der trinomischen Gleichungen. Math. Ann. 65(4), 556–566 (1908) (in German)

  6. Bolyai, F.: Tentamen juventutem studiosam in elementa metheseo purae, elementaris ac sublimioris, methodo intuitiva, evidentiaque huic propria, introducendi, 1832/33, Cum Appendice triplici. I–II. Marosvásárhely (in Latin)

  7. Borcea, J., Brändén, P.: Applications of stable polynomials to mixed determinants: Johnson’s conjectures, unimodality, and symmetrized Fischer products. Duke Math. J. 143(2), 205–223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borcea J., Brändén, P.: Pólya-Schur master theorems for circular domains and their boundaries. Ann. Math. (2) 170(1), 465–492 (2009)

  9. Brieskorn, E., Knörrer, H.: Plane algebraic curves. Birkhäuser/Springer Basel AG, Basel (1986)

    Book  MATH  Google Scholar 

  10. Bring, E.S.: Meletemata quaedam mathematica circa transformationem aequationum algebraicarum, Lund (1786) (in Latin)

  11. Burde, G., Zieschang, H.: Knots, 2nd edn. Walter de Gruyter & Co., Berlin (2003)

  12. de Wolff, T.: On the Geometry, Topology and Approximation of Amoebas, Ph.D. thesis, Goethe University, Frankfurt am Main (2013)

  13. Dilcher, K., Nulton, J.D., Stolarsky, K.B.: The zeros of a certain family of trinomials. Glasgow Math. J. 34(1), 55–74 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimca, A.: Singularities and topology of hypersurfaces. Universitext, Springer-Verlag, New York (1992)

    Book  MATH  Google Scholar 

  15. Egerváry, J.: A minimum problem on a symmetric multilinear form. Math. Phys. Lapok 29, 21–43 (1922) (in Hungarian)

  16. Egerváry, J.: On a maximum-minimum problem and its connexion with the roots of equations. Acta Litt. ac Sci 1, 39–45 (1922)

    MATH  Google Scholar 

  17. Egerváry, J.: On the trinomial equation. Math. Phys. Lapok 37, 36–57 (1930) (in Hungarian)

  18. Egerváry, J.: On a generalisation of a theorem of Kakeya. Acta Litt. ac Sci 5, 78–82 (1931)

    MATH  Google Scholar 

  19. Farkas, G.: The Bolyai algorithm. Értekezések a Mathematikai Tudományok Köréből 8, 1–8 (1881) (in Hungarian)

  20. Farkas, G.: Sur les fonctions itératives. J. Math. 10, 101–108 (1884) (in French)

  21. Fejér, L.: Über die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung. Math. Ann. 65(3), 413–423 (1908) (in German)

  22. Fell, H.: The geometry of zeros of trinomial equations. Rend. Circ. Mat. Palermo 29(2), 303–336 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fladt, K.: Analytische Geometrie spezieller ebener Kurven. Akademische Verlagsgesellschaft, Frankfurt am Main (1962) (in German)

  24. Forsberg, M., Passare, M., Tsikh, A.: Laurent determinants and arrangements of hyperplane amoebas. Adv. Math. 151, 45–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gamelin, T.W.: Complex analysis. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  26. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  27. Greenfield, G., Drucker, D.: On the discriminant of a trinomial. Linear Algebra Appl. 62, 105–112 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hatcher, A.: Algebraic Topology, Cambridge University Press (2001)

  29. Jerrard, G.B.: On the possibility of solving equations of any degree however elevated. Phil. Mag. Ser. 3(4), 457–460 (1852)

    Google Scholar 

  30. Kemper, A.J.: Ueber die Separation komplexer Wurzeln algebraischer Gleichungen. Math. Ann. 85, 49–59 (1922) (in German)

  31. Landau, E.: Sur quelques généralisations du théorème de M.Picard. Ann. Sci. École Norm. 24(3), 179–201, (1907) (in French)

  32. Libgober, A.: On topological complexity of solving polynomial equations of special type. In: Transactions of the Seventh Army Conference on Applied Mathematics and Computing (West Point, NY, 1989), ARO Rep., vol. 90, pp. 475–478. U.S. Army Res. Office, Research Triangle Park, NC (1990)

  33. Lockwood, E.H.: A book of Curves. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  34. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Amer. Math. Soc, Providence, R.I. (2015)

    MATH  Google Scholar 

  35. Marden, M.: Geometry of Polynomials, 2nd edn. Amer. Math. Soc, Providence, R.I. (1966)

    MATH  Google Scholar 

  36. Maslov, V.P.: On a new superposition principle for optimization problem, Séminaire sur les équations aux dérivées partielles, 1985–1986, École Polytech., Palaiseau, pp. Exp. No. XXIV, 14 (1986)

  37. Melman, A.: Geometry of trinomials. Pacific J. Math. 259(1), 141–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mikhalkin, G.: Real algebraic curves, the moment map and amoebas. Ann. Math. 151(1), 309–326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: S.K., Eliashberg, Y., Gromov, M. (eds.) Different Faces of Geometry Donaldson, pp. 257–300. Kluwer, New York (2004)

  40. Mikhalkin, G.: Enumerative tropical algebraic geometry in \(\mathbb{R}^2\). J. Am. Math. Soc. 18(2), 313–377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Milnor, J.: Singular points of complex hypersurfaces. Annals of Mathematics Studies, vol. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1968)

  42. Nekrassoff, P.: Ueber trinomische Gleichungen. Math. Ann. 29(3), 413–430 (1887) (in German)

  43. Passare, M., Rullgård, H.: Amoebas, Monge-Ampére measures and triangulations of the Newton polytope. Duke Math. J. 121(3), 481–507 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Passare, M., Sadykov, T., Tsikh, A.: Singularities of hypergeometric functions in several variables. Compos. Math. 141, 787–810 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Passare, M., Tsikh, A.: Amoebas: their spines and their contours. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics, vol. 377, pp. 275–288. American Mathematical Society, Providence, RI (2005)

    Chapter  Google Scholar 

  46. Pellet, A.E.: Sur un mode de séparation des racines des équations et la formule de Lagrange. Darboux Bull. 5(2), 393–395 (1881) (in French)

  47. Purbhoo, K.: A Nullstellensatz for amoebas. Duke Math. J. 14(3), 407–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rullgård, H.: Stratification des espaces de polynômes de Laurent et la structure de leurs amibes. C. R. Acad. Sci. Paris, Sèrie I 331, 355–358 (2000) (in French)

  49. Rullgård, H.: Topics in Geometry, Analysis and Inverse Problems, Ph.D. thesis, Stockholm University (2003)

  50. Shafarevich, I.R.: Basic Algebraic Geometry 1. Springer-Verlag, Berlin (1994)

    Book  MATH  Google Scholar 

  51. Smale, S.: On the topology of algorithms. I. J. Complex. 3(2), 81–89 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sommerville, D.M.Y.: The singularities of the algebraic trochoids. Proc. Lond. Math. Soc. 2(1), 385–392 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  53. Szabó, P.G.: On the roots of the trinomial equation. Cent. Eur. J. Oper. Res. 18(1), 97–104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Theobald, T., de Wolff, T.: Amoebas of genus at most one. Adv. Math. 239, 190–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vassiliev, V.A.: Complements of Discriminants of Smooth Maps: Topology and Applications, Translations of Mathematical Monographs, vol. 98. Amer. Math. Soc, Providence, RI (1992)

    Google Scholar 

  56. Vassiliev, V.A.: Topology of discriminants and their complements. In: Proceedings of International Congress of Mathematicians, Zürich, Birkhäuser, pp. 209–226 (1994)

  57. Wagner, D.G.: Multivariate stable polynomials: theory and applications. Bull. Am. Math. Soc. (N.S.) 48(1), 53–84 (2011)

Download references

Acknowledgments

We thank Jens Forsgård and Maurice Rojas for helpful comments and for bringing various additional aspects to our attention. We are also grateful to an anonymous referee for detailed suggestions. The first author was partially supported by DFG projects TH 1333/2-1 and 1333/3-1. The second author was partially supported by DFG project TH 1333/2-1, GIF Grant No. 1174/2011 and DFG project MA 4797/3-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Theobald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theobald, T., de Wolff, T. Norms of roots of trinomials. Math. Ann. 366, 219–247 (2016). https://doi.org/10.1007/s00208-015-1323-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1323-8

Mathematics Subject Classification

Navigation