Skip to main content
Log in

Seminormal forms and cyclotomic quiver Hecke algebras of type A

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper shows that the cyclotomic quiver Hecke algebras of type A, and the gradings on these algebras, are intimately related to the classical seminormal forms. We start by classifying all seminormal bases and then give an explicit “integral” closed formula for the Gram determinants of the Specht modules in terms of the combinatorics associated with the KLR grading. We then use seminormal forms to give a deformation of the KLR algebras of type A. This makes it possible to study the cyclotomic quiver Hecke algebras in terms of the semisimple representation theory and seminormal forms. As an application we construct a new distinguished graded cellular basis of the cyclotomic KLR algebras of type A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariki, S.: On the semi-simplicity of the Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr \mathfrak{S}_n\). J. Algebra 169, 216–225 (1994)

    Article  MathSciNet  Google Scholar 

  2. Ariki, S.: On the classification of simple modules for cyclotomic Hecke algebras of type \(G(m,1, n)\) and Kleshchev multipartitions. Osaka J. Math. 38, 827–837 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Ariki, S., Koike, K.: A Hecke algebra of \(({ Z}/r{ Z})\wr {\mathfrak{S}}_n\) and construction of its irreducible representations. Adv. Math. 106, 216–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ariki, S., Mathas, A., Rui, H.: Cyclotomic Nazarov-Wenzl algebras. Nagoya Math. J. 182, 47–134 (2006) (Special issue in honour of George Lusztig). arXiv:math/0506467

  5. Brundan, J., Kleshchev, A.: Schur–Weyl duality for higher levels. Sel. Math. (N.S.) 14, 1–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras. Invent. Math. 178, 451–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222, 1883–1942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brundan, J., Kleshchev, A., Wang, W.: Graded Specht modules. J. Reine Angew. Math. 655, 61–87 (2011). arXiv:0901.0218

    MathSciNet  MATH  Google Scholar 

  9. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra III: category \({\cal O}\). Represent. Theory 15, 170–243 (2011). arXiv:0812.1090

    Article  MathSciNet  MATH  Google Scholar 

  10. Dipper, R., James, G., Mathas, A.: Cyclotomic \(q\)-Schur algebras. Math. Z. 229, 385–416 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dipper, R., Mathas, A.: Morita equivalences of Ariki–Koike algebras. Math. Z. 240, 579–610 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoffnung, A.E., Lauda, A.D.: Nilpotency in type \(A\) cyclotomic quotients. J. Algebraic Comb. 32, 533–555 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, J., Mathas, A.: Graded cellular bases for the cyclotomic Khovanov–Lauda–Rouquier algebras of type \(A\). Adv. Math. 225, 598–642 (2010). arXiv:0907.2985

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, J., Mathas, A.: Cyclotomic quiver Schur algebras for linear quivers. Proc. Lond. Math. Soc. 110, 1315–1386 (2015). arXiv:1110.1699

    Article  MathSciNet  MATH  Google Scholar 

  16. James, G., Mathas, A.: A \(q\)-analogue of the Jantzen–Schaper theorem. Proc. Lond. Math. Soc. (3) 74, 241–274 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, J., Mathas, A.: The Jantzen sum formula for cyclotomic \(q\)-Schur algebras. Trans. Am. Math. Soc. 352, 5381–5404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. James, G., Murphy, G.E.: The determinant of the Gram matrix for a Specht module. J. Algebra 59, 222–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  20. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363, 2685–2700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleshchev, A., Mathas, A., Ram, A.: Universal graded Specht modules for cyclotomic Hecke algebras. Proc. Lond. Math. Soc. (3) 105, 1245–1289 (2012). arXiv:1102.3519

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, G.: Integral Basis Theorem of Cyclotomic Khovanov–Lauda–Rouquier Algebras of Type A. Ph.D. thesis, University of Sydney (2012)

  25. Maksimau, R.: Quiver Schur algebras and Koszul duality. J. Algebra 406, 91–133 (2014). arXiv:1307.6013

    Article  MathSciNet  MATH  Google Scholar 

  26. Mathas, A.: Iwahori–Hecke algebras and Schur algebras of the symmetric group. In: University Lecture Series, vol. 15. American Mathematical Society, Providence (1999)

  27. Mathas, A.: Matrix units and generic degrees for the Ariki–Koike algebras. J. Algebra 281, 695–730 (2004). arXiv:math/0108164

    Article  MathSciNet  MATH  Google Scholar 

  28. Mathas, A.: Seminormal forms and Gram determinants for cellular algebras. J. Reine Angew. Math. 619, 141–173 (2008) (With an appendix by Marcos Soriano). arXiv:math/0604108

  29. Murphy, G.E.: The idempotents of the symmetric group and Nakayama’s conjecture. J. Algebra 81, 258–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Okounkov, A., Vershik, A.: A new approach to representation theory of symmetric groups. Sel. Math. (N.S.) 2, 581–605 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rouquier, R.: 2-Kac–Moody algebras (2008, preprint). arXiv:0812.5023

  32. Rouquier, R., Shan, P., Varagnolo, M., Vasserot, E.: Categorifications and cyclotomic rational double affine Hecke algebras (2013, preprint). arXiv:1305.4456

  33. Ryom-Hansen, S.: The Schaper formula and the Lascoux, Leclerc and Thibon algorithm. Lett. Math. Phys. 64, 213–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ryom-Hansen, S.: Young’s seminormal form and simple modules for \(S_n\) in characteristic \(p\), 2011. Algebras Represent. Theory 16, 15871609 (2013). arXiv:1107.3076

    Article  MathSciNet  MATH  Google Scholar 

  35. Serre, J.-P.: Local fields. In: Graduate Texts in Mathematics, vol. 67. Springer, New York (1979) (Translated from the French by Marvin Jay Greenberg)

  36. Stroppel, C., Webster, B.: Quiver Schur algebras and \(q\)-Fock space (2011, preprint). arXiv:1110.1115

  37. Young, A.: On quantitative substitutional analysis I. Proc. Lond. Math. Soc. 33, 97–145 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yvonne, X.: A conjecture for \(q\)-decomposition matrices of cyclotomic \(v\)-Schur algebras. J. Algebra 304, 419–456 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

J. Hu and A. Mathas were supported by the Australian Research Council. J. Hu author was also supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Mathas.

Appendix: Seminormal forms for the linear quiver

Appendix: Seminormal forms for the linear quiver

In this appendix we show how the results in this paper work when \(e=0\) so that \(\xi \in K\) is either not a root of unity or \(\xi =1\) and K is a field of characteristic zero. In order to define a modular system we have to leave the case where the cyclotomic parameters \(Q_1,\ldots ,Q_\ell \) are integral, that is, when \(Q_l=[\kappa _l]\) for \(1\le l\le \ell \). This causes quite a few notational inconveniences, but otherwise the story is much the same as for the case when \(e>0\). We do not develop the full theory of “0-idempotent subrings” here. Rather, we show just one way of proving the results in this paper when \(e=0\).

Fix a field K and \(0\ne \xi \in K\) of quantum characteristic e. That is, either \(\xi =1\) and K is a field of characteristic zero or \(\xi ^d\ne 1\) for \(d\in \mathbb {Z}\). The multicharge \({\varvec{\kappa }}\in \mathbb {Z}^\ell \) is arbitrary.

Let \({\mathcal {O}}=\mathbb {Z}[x,\xi ]_{(x)}\) be the localisation of \(\mathbb {Z}[x,\xi ]\) at the principal ideal generated by x. Let \(\fancyscript{K}=\mathbb {Q}(x,\xi )\) be the field of fractions of \({\mathcal {O}}\). Define \(\mathcal {H}^\varLambda _n({\mathcal {O}})\) to be the cyclotomic Hecke algebra of type A with Hecke parameter \(t=\xi \), a unit in \({\mathcal {O}}\), and cyclotomic parameters

$$\begin{aligned} Q_l=x^l+[\kappa _l],\quad \text {for }1\le l\le \ell , \end{aligned}$$

where, as before, \([k]=[k]_t\) for \(k\in \mathbb {Z}\). Then \(\mathcal {H}^\varLambda _{n}(\fancyscript{K})=\mathcal {H}^\varLambda _n({\mathcal {O}})\otimes _{\mathcal {O}}\fancyscript{K}\) is split semisimple in view of Ariki’s semisimplicity condition [1]. Moreover, by definition, \(\mathcal {H}^\varLambda _{n}(K)\cong \mathcal {H}^\varLambda _n({\mathcal {O}})\otimes _{\mathcal {O}}K\), where we consider K as an \({\mathcal {O}}\)-module by setting x act on K as multiplication by zero.

Define a new content function for \(\mathcal {H}^\varLambda _n({\mathcal {O}})\) by setting

$$\begin{aligned} C_\gamma =t^{c-r}x^{l}+[\kappa _l+c-r], \end{aligned}$$

for a node \(\gamma =(l,r,c)\). We will also need the previous definition of contents below. If \({\mathfrak t}\in {\mathop {\mathrm{Std}}\nolimits }(\mathcal {P}^{\varLambda }_{n})\) is a tableau and \(1\le k\le n\) then set \(C_k({\mathfrak t})=C_\gamma \), where \(\gamma \) is the unique node such that \({\mathfrak t}(\gamma )=k\).

As in Sect. 2.5, let \(\{m_{{\mathfrak s}{\mathfrak t}}\,|\,({\mathfrak s},{\mathfrak t})\in {\mathrm{Std}}^2(\mathcal {P}^{\varLambda }_{n})\}\) be the Murphy basis of \(\mathcal {H}^\varLambda _n({\mathcal {O}})\). Then the analogue of Lemma 2.6 is that if \(1\le r\le n\) then

$$\begin{aligned} m_{{\mathfrak s}{\mathfrak t}}L_r=C_r({\mathfrak t})m_{{\mathfrak s}{\mathfrak t}}+\sum _{({\mathfrak u},{\mathfrak v})\vartriangleright ({\mathfrak s},{\mathfrak t})}r_{{\mathfrak u}{\mathfrak v}}m_{{\mathfrak u}{\mathfrak v}}, \end{aligned}$$

for some \(r_{{\mathfrak u}{\mathfrak v}}\in {\mathcal {O}}\). As in Sect. 3.1 define a \(*\)-seminormal basis of \(\mathcal {H}^\varLambda _{n}(\fancyscript{K})\) to be a basis \(\{f_{{\mathfrak s}{\mathfrak t}}\}\) of simultaneous two-sided eigenvectors for \(L_1,\ldots ,L_n\) such that \(f_{{\mathfrak s}{\mathfrak t}}^{*}=f_{{\mathfrak t}{\mathfrak s}}\).

Define a seminormal coefficient system for \(\mathcal {H}^\varLambda _n({\mathcal {O}})\) to be a set of scalars \({\varvec{\alpha }}=\{\alpha _r({\mathfrak s})\}\) satisfying Definition 3.5(a), (b) and such that if \({\mathfrak s}\in {\mathop {\mathrm{Std}}\nolimits }(\mathcal {P}^{\varLambda }_{n})\) and \({\mathfrak u}={\mathfrak s}(r,r+1)\in {\mathop {\mathrm{Std}}\nolimits }(\mathcal {P}^{\varLambda }_{n})\) then

$$\begin{aligned} \alpha _r({\mathfrak s})\alpha _r({\mathfrak u}) = \frac{(1-C_r({\mathfrak s})+tC_r({\mathfrak u}))(1+tC_r({\mathfrak s})-C_r({\mathfrak u}))}{P_r({\mathfrak s})P_r({\mathfrak u})}, \end{aligned}$$
(A1)

where \(P_r({\mathfrak s})=C_r({\mathfrak u})-C_r({\mathfrak s})\), and where \(\alpha _r({\mathfrak s})=0\) if \({\mathfrak u}\notin {\mathop {\mathrm{Std}}\nolimits }(\mathcal {P}^{\varLambda }_{n})\).

As in Theorem 3.9, each seminormal basis of \(\mathcal {H}^\varLambda _n(\fancyscript{K})\) is determined by a seminormal coefficient system \({\varvec{\alpha }}=\{\alpha _r({\mathfrak s})\}\), such that

$$\begin{aligned} T_rf_{{\mathfrak s}{\mathfrak t}}=\alpha _r({\mathfrak s})f_{{\mathfrak u}{\mathfrak t}}+\frac{1+(t-1)C_{r+1}({\mathfrak s})}{P_r({\mathfrak s})}f_{{\mathfrak s}{\mathfrak t}}, \quad \text {where }{\mathfrak u}={\mathfrak s}(r,r+1), \end{aligned}$$

together with a set of scalars \(\{\gamma _{{\mathfrak t}^{\varvec{\lambda }}}\,|\,{\varvec{\lambda }}\in \mathcal {P}^{\varLambda }_{n}\}\). Notice that \(I=\mathbb {Z}\), since \(e=0\), so if \(\mathbf {i}\in I^n\) then \({\mathfrak t}\in {\mathop {\mathrm{Std}}\nolimits }(\mathbf {i})\) if and only if \(c_r({\mathfrak t})=i_r\) and, in turn, this is equivalent to the constant term of \(C_r({\mathfrak t})\) being equal to \([i_r]\), for \(1\le r\le n\). Arguing as in Lemma 4.3,

$$\begin{aligned} f_{\mathbf {i}}^{\mathcal {O}}= \sum _{{\mathfrak t}\in {\mathop {\mathrm{Std}}\nolimits }(\mathbf {i})}\frac{1}{\gamma _{\mathfrak t}}f_{{\mathfrak t}{\mathfrak t}}\in \mathcal {H}^\varLambda _n({\mathcal {O}}). \end{aligned}$$

With these definitions in place all of the arguments in Sect. 4 go through with only minor changes. In particular, if \(1\le r\le n\) and \(\mathbf {i}\in I^n\) then Definition 4.12 should be replaced by

$$\begin{aligned} \psi ^{\mathcal {O}}_rf_{\mathbf {i}}^{\mathcal {O}}={\left\{ \begin{array}{ll} (T_r+1)\frac{1}{M_r}f_{\mathbf {i}}^{\mathcal {O}},&{}\text {if }i_r=i_{r+1}\\ (T_rL_r-L_rT_r)f_{\mathbf {i}}^{\mathcal {O}},&{}\text {if }i_r=i_{r+1}+1,\\ (T_rL_r-L_rT_r)\frac{1}{M_r}f_{\mathbf {i}}^{\mathcal {O}},&{}\text {otherwise,}\\ \end{array}\right. } \end{aligned}$$

and \(y^{{\mathcal {O}}}_rf_{\mathbf {i}}^{\mathcal {O}}=\big (L_r-C_r({\mathfrak t})\big )f_{\mathbf {i}}^{\mathcal {O}}\) where, as before, \(M_r=1-L_r+tL_{r+1}\). With these new definitions, if \({\mathfrak s}\in {\mathop {\mathrm{Std}}\nolimits }(\mathbf {i})\), for \(\mathbf {i}\in I^m\), and \(1\le r\le n\) then Lemma 4.19 becomes

$$\begin{aligned} \psi ^{\mathcal {O}}_r f_{{\mathfrak s}{\mathfrak t}}=B_r({\mathfrak s})f_{{\mathfrak s}{\mathfrak t}}+\frac{\delta _{i_ri_{r+1}}}{P_r({\mathfrak s})}f_{{\mathfrak u}{\mathfrak t}}, \end{aligned}$$

where \({\mathfrak u}={\mathfrak s}(r,r+1)\) and

$$\begin{aligned} B_r({\mathfrak s})={\left\{ \begin{array}{ll} \frac{\alpha _r({\mathfrak s})}{1-C_r({\mathfrak s})+tC_{r+1}({\mathfrak s})},&{}\text {if }i_r=i_{r+1},\\ \alpha _r({\mathfrak s})P_r({\mathfrak s}),&{}\text {if }i_r=i_{r+1}+1,\\ \frac{\alpha _r(s)P_r({\mathfrak s})}{1-C_r({\mathfrak s})+tC_{r+1}({\mathfrak s})},&{}\text {otherwise.} \end{array}\right. } \end{aligned}$$

Observe that if \({\mathfrak u}={\mathfrak s}(r,r+1)\) is a standard tableau then, using (A1), the definitions imply that

$$\begin{aligned} B_r({\mathfrak s})B_r({\mathfrak u}) = {\left\{ \begin{array}{ll} \frac{1}{P_r({\mathfrak s})P_r({\mathfrak u})},&{}\text {if }i_r=i_{r+1},\\ (1-C_r({\mathfrak s})+tC_r({\mathfrak u}))(1+tC_r({\mathfrak s})-C_r({\mathfrak u})),&{}\text {if }i_r\leftrightarrows i_{r+1},\\ (1+tC_r({\mathfrak s})-C_r({\mathfrak u})),&{}\text {if }i_r\rightarrow i_{r+1},\\ (1-C_r({\mathfrak s})+tC_r({\mathfrak u})),&{}\text {if }i_r\leftarrow i_{r+1},\\ 1,&{}\text {otherwise.} \end{array}\right. } \end{aligned}$$

Comparing this with Lemma 4.22, it is now easy to see that analogues of Proposition 4.23 and Proposition 4.24 both hold in this situation. Hence, repeating the arguments of Sect. 4.4, a suitable modification of Theorem A also holds. Similarly, the construction of the bases in Sects. 5 and Sect. 6 now goes though largely without change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Mathas, A. Seminormal forms and cyclotomic quiver Hecke algebras of type A . Math. Ann. 364, 1189–1254 (2016). https://doi.org/10.1007/s00208-015-1242-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1242-8

Mathematics Subject Classification

Navigation