Skip to main content
Log in

An \(H^{s,p}(\text {curl};\varOmega )\) estimate for the Maxwell system

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We derive an \(H_{0}^{s,p}(\text {curl};\varOmega )\) estimate for the solutions of the Maxwell type equations modeled with anisotropic and \(W^{s, \infty }(\varOmega )\)-regular coefficients. Here, we obtain the regularity of the solutions for the integrability and smoothness indices \((p, s)\) in a plane domain characterized by the apriori lower/upper bounds of \(a\) and the apriori upper bound of its Hölder semi-norm of order \(s\). The proof relies on a perturbation argument generalizing Gröger’s \(L^p\)-type estimate, known for the elliptic problems, to the Maxwell system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One way to deal with the general case where \(k^2\) is replaced by \(b \in (L^{\infty }(\varOmega ))^{3\times 3}\) (for example in (1.4) replace \(k^2\) by \(b(x):=-k^2 \epsilon ^{-1}(x)\), \(x\in \varOmega \), with \(\epsilon \in (L^\infty (\varOmega ))^{3\times 3}\) lower bounded by a positive constant) is discussed in Remark 1.

  2. The space \(L_{s}^{p}({\mathbb {R}}^3)\) can also be defined using the Fourier transform \( L_{s}^{p}({\mathbb {R}}^3) := \{f ; f\in {\mathcal {S}}', \Vert f\Vert _{p}^{s} < \infty \}, \) with the norm \( \Vert f\Vert _{p}^{s} = \Vert {\mathcal {F}}^{-1}\{(1+|\xi |^2)^{\frac{s}{2}}{\mathcal {F}}{f}\} \Vert _{L^p({\mathbb {R}}^3)}, \) where \(s\in {\mathbb {R}}\). Here, \({\mathcal {F}}\) and \({\mathcal {F}}^{-1}\) represent the Fourier transform and inverse Fourier transform respectively and \({\mathcal {S}}'\) represents the space of tempered distributions.

  3. A detailed discussion about this space can be found in [1, 5], for instance.

  4. More details about this space can be found in [5] and ([1], Chapter 7).

  5. In the case \(s=0\), this condition is not needed. In all subsequent estimates, we can replace \(\tilde{M}\) by \(0\) in this case.

References

  1. Adams, R.A.: Sobolev spaces. Pure and Applied Mathematics, vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975)

  2. Alberti, G.S., Capdeboscq, Y.: Elliptic regularity theory applied to time harmonic anisotropic Maxwell’s equations with less than Lipschitz complex coefficients. SIAM J. Math. Anal. 46(1), 998–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, G., Li, Y., Zhou, Z.: \(L^p\) estimates of time-harmonic Maxwell’s equations in a bounded domain. J. Differ. Equ. 245(12), 3674–3686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, G., Minut, A., Zhou, Z.: \(L^p\) estimates for Maxwell’s equations with source term. Commun. Partial Differ. Equ. 32(7–9), 1449–1471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, No. 223

    Book  MATH  Google Scholar 

  6. Evans, L.C.: Partial differential equations, volume 19 of Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    Google Scholar 

  8. Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39(6), 1128–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gröger, K.: A \(W^{1, p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283(4), 679–687 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kar, M., Sini, M.: Reconstruction of interfaces using CGO solutions for the Maxwell equations. J. Inverse Ill-Posed Probl. 22(2), 169–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meyers, N.G.: An \(L^{p}\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 3(17), 189–206 (1963)

    MathSciNet  Google Scholar 

  13. Mitrea, D., Mitrea, M., Pipher, J.: Vector potential theory on nonsmooth domains in \(\mathbf{R}^3\) and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3(2), 131–192 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mitrea, M.: Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds. Duke Math. J. 125(3), 467–547 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  Google Scholar 

  16. Rudin, W.: Functional analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991)

    Google Scholar 

  17. Sini, M., Yoshida, K.: On the reconstruction of interfaces using complex geometrical optics solutions for the acoustic case. Inverse Probl. 28(5), 055013 (2012). 22

    Article  MathSciNet  Google Scholar 

  18. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  19. Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15(2), 475–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yin, H.M.: Regularity of weak solution to Maxwell’s equations and applications to microwave heating. J. Differ. Equ. 200(1), 137–161 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

MK was supported by the Academy of Finland through the Finnish Centre of Excellence in Inverse Problems Research and the ERC Starting Grant (Grant Agreement No 307023) and he is very thankful to Mikko Salo for his support. MS was partially supported by RICAM. The authors also would like to express their gratitude to the University of Jyväskylä, Finland and RICAM, Austrian Academy of Sciences, Austria, where most of the work has been done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, M., Sini, M. An \(H^{s,p}(\text {curl};\varOmega )\) estimate for the Maxwell system. Math. Ann. 364, 559–587 (2016). https://doi.org/10.1007/s00208-015-1225-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1225-9

Mathematics Subject Classification

Navigation