Skip to main content
Log in

Wasserstein distance and the rectifiability of doubling measures: part I

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(\mu \) be a doubling measure in \({\mathbb {R}}^n\). We investigate quantitative relations between the rectifiability of \(\mu \) and its distance to flat measures. More precisely, for \(x\) in the support \(\Sigma \) of \(\mu \) and \(r > 0\), we introduce a number \(\alpha (x,r)\in (0,1]\) that measures, in terms of a variant of the \(L^1\)-Wasserstein distance, the minimal distance between the restriction of \(\mu \) to \(B(x,r)\) and a multiple of the Lebesgue measure on an affine subspace that meets \(B(x,r/2)\). We show that the set of points of \(\Sigma \) where \(\int _0^1 \alpha (x,r) {dr \over r} < \infty \) can be decomposed into rectifiable pieces of various dimensions. We obtain additional control on the pieces and the size of \(\mu \) when we assume that some Carleson measure estimates hold.

Résumé en Français

 Soit \(\mu \) une mesure doublante dans \({\mathbb {R}}^n\). On étudie des relations quantifiées entre la rectifiabilité de \(\mu \) et la distance entre \(\mu \) et les mesures plates. Plus précisément, on utilise une variante de la \(L^1\)-distance de Wasserstein pour définir, pour \(x\) dans le support \(\Sigma \) de \(\mu \) et \(r>0\), un nombre \(\alpha (x,r)\) qui mesure la distance minimale entre la restriction de \(\mu \) à \(B(x,r)\) et une mesure de Lebesgue sur un sous-espace affine passant par \(B(x,r/2)\). On décompose l’ensemble des points \(x\in \Sigma \) tels que \(\int _0^1 \alpha (x,r) {dr \over r} < \infty \) en parties rectifiables de dimensions diverses, et on obtient un meilleur contrôle de ces parties et de la taille de \(\mu \) quand les \(\alpha (x,r)\) vérifient certaines conditions de Carleson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Azzam, J., David, G., Toro, T.: Wasserstein distance and the rectifiability of doubling measures: part II, Preprint. arXiv:1411.2512 (2014)

  2. Azzam, J., Tolsa, X.: Characterization of n-rectifiability in terms of Jones’ square function: part II. Preprint. arXiv:1501.01572 (2015)

  3. Beznosova, O. Reznikov, A.: Equivalent definitions of dyadic Muckenhoupt and Re- verse Höder classes in terms of Carleson sequences, weak classes, and comparability of dyadic \(L \log \, L\) and \(A_\infty \) constants. arXiv:1201.0520

  4. Buckley, S.: Summation conditions on weights. Mich. Math. J. 40, 153–170 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chousionis, V., Garnett, J., Le, T., Tolsa, X.: Square functions and uniform rectifiability. Preprint (2014)

  6. Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61, no. 2, pp. 601–628 (1990)

  7. Chousionis, V., Garnett, J., Le, T., Tolsa, X.: Square functions and uniform rectifiability. To appear in Trans. Amer. Math. Soc

  8. David, G.: Morceaux de graphes lipschitziens et intégrales singulières sur une surface. Rev. Mat. Iberoam. 4(1), 73 (1988)

    Article  MATH  Google Scholar 

  9. David, G., Semmes, S.: Singular integrals and rectifiable sets in \({ R}^n\): beyond Lipschitz graphs. Astérisque 193, 152 (1991)

    MathSciNet  Google Scholar 

  10. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence, RI (1993)

    Book  Google Scholar 

  11. Federer, H.: Geometric Measure Theory, Grundlehren der Mathematishen Wissenschaften 153. Springer, Berlin (1969)

    Google Scholar 

  12. Fefferman, R., Kenig, C., Pipher, J.: The theory of weights and the Dirichlet problem for elliptic equations. Ann. Math. 134, 65–124 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Folland, G.B.: Real Analysis, second ed., Pure and Applied Mathematics (New York), Wiley, New York, Modern Techniques and their Applications. A Wiley-Interscience Publication (1999)

  14. García-Cuerva, J., Rubio de Francia, J.-L.: Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116. Notas de Matemática [Mathematical Notes], vol. 104, pp. x+604, North-Holland Publishing Co., Amsterdam (1985)

  15. González, M.J., Nicolau, A.: Doubling properites of \(A_\infty \). J. Fourier Anal. Appl. 8(6), 613–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gonzáles Llorente, J., Nicolau, A.: Regularity properties of measures, entropy and the law of the iterated logarithm. Proc. Lond. Math. Soc (3) 89(2), 485–524 (2004)

    Article  Google Scholar 

  17. Hofmann, S., Martell, J.M., Mayboroda, S.: Uniform rectifiability and harmonic measure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided NTA domains. Int. Math. Res. Not. IMRN 2014, no. 10, pp. 2702–2729 (2014)

  18. Jaye, B., Nazarov, F., Volberg, A.: The fractional Riesz transform and an exponential potential. Algebra i Analiz 24(6), 77–123 (2012). Translation in St. Petersburg Math. J. 24(6), 903–938 (2013)

  19. Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1–15 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Journé, J.-L.: Calderón-Zygmund Operators, Pseudodifferential operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983)

    Google Scholar 

  21. Léger, J.C.: Menger curvature and rectifiability. Ann. Math. (2) 149(3), 831–869 (1999)

    Article  MATH  Google Scholar 

  22. Lerman, G.: Quantifying curvelike structures of measures by using \(L_2\) Jones quantities. Commun. Pure Appl. Math. 56(9), 1294–1365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  24. Mayboroda, S., Volberg, A.: Boundedness of the square function and rectifiability. C. R. Math. Acad. Sci. Paris 347(17–18), 1051–1056 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mayboroda, S., Volberg, A.: Finite square function implies integer dimension. C. R. Math. Acad. Sci. Paris 347(21–22), 1271–1276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazarov, F., Reznikov, A., Treil, S., Volberg, A.: Carleson-Buckley measures beyond the scope of \(A_\infty \) and their applications. arXiv:1202.2931v2

  27. Nazarov, F., Tolsa, X., Volberg, A.: On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Math (to appear)

  28. Preiss, D.: Geometry of measures in \({ R}^n\): distribution, rectifiability, and densities. Ann. Math. (2) 125(3), 537–643 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Semmes, S.: Analysis vs. geometry on a class of rectifiable hypersurfaces in \({\mathbb{R}}^n\). Indiana Univ. Math. J. 39(4), 1005–1035 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  31. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III (1993)

  32. Tolsa, X.: Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality, Proc. Lond. Math. Soc. (3) 98(2), 393–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tolsa, X.: Mass transport and uniform rectifiability. Geom. Funct. Anal. 22(2), 478–527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tolsa, X.: Uniform measures and uniform rectifiability, Preprint. arXiv:1310.0658 (2013)

  35. Tolsa, X.: Rectifiable measures, square functions involving densities, and the Cauchy transform. Preprint. arXiv:1408.6979 (2015)

  36. Tolsa, X.: Characterization of n-rectifiability in terms of Jones’ square function: part I. Preprint (2015)

  37. Tolsa, X., Toro, T.: Rectifiability via a square function and Preiss’ theorem to appear in International Mathematics Research Notices (2014)

  38. Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009)

    Google Scholar 

  39. Zygmund, A.: Trigonometric series, Vol. I, II. Third edition. With a foreword by Robert A. Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge, xii; Vol. I: pp. xiv+383, Vol. II: pp. viii+364 (2002)

Download references

Acknowledgments

The authors are grateful to Alessio Figalli and Xavier Tolsa for helpful discussions. The first author would like to thank IPAM for its hospitality, part of this manuscript was written while he was in residence there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy David.

Additional information

Jonas Azzam was partially supported by NSF RTG Grant 0838212. Guy David acknowledges the generous support of the Institut Universitaire de France, and of the ANR (programme blanc GEOMETRYA, ANR-12-BS01-0014). Tatiana Toro was partially supported by an NSF Grants DMS-0856687 and DMS-1361823, a Grant from the Simons Foundation (# 228118) and the Robert R. and Elaine F. Phelps Professorship in Mathematics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzam, J., David, G. & Toro, T. Wasserstein distance and the rectifiability of doubling measures: part I. Math. Ann. 364, 151–224 (2016). https://doi.org/10.1007/s00208-015-1206-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1206-z

Navigation