Skip to main content
Log in

Integral geometric measure in separable Banach space

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define an \(m\) dimensional integral geometric measure in separable Banach spaces. In case \(X\) is a Banach space with the Radon-Nikodým, the integral geometric measure of an \(m\) rectifiable subset \(M\subseteq X\) is bounded below by its Hausdorff measure. Moreover, we give an explicit formula for the computation of the integral geometric measure. We also define a corresponding integral geometric mass of \(m\) dimensional rectifiable chains in \(X\) with coefficients in a complete Abelian group and apply our results to establish it is lower semicontinuous with respect to flat norm convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albiac, F., Kalton, N.J.: Topics in Banach space theory. Graduate texts in mathematics, vol. 233. Springer, New York (2006)

    Google Scholar 

  2. Beer, G.A.: The hausdorff metric and convergence in measure. Mich. Math. J. 21(1), 63–64 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

  4. Bieberbach, L.: Über eine Extremaleigenschaft des Kreises. Deutsche Math. Ver. 24, 247–250 (1915)

    MATH  Google Scholar 

  5. Burago, Yu.D., Zalgaller, V.A.: Geometric inequalities. In: Grundlehren der mathematischen Wissenschaften, no. 285. Springer, Berlin (1988)

  6. Christensen, J.P.R.: On sets of Haar measure zero in Abelian Polish groups. Isr. J. Math. 13, 255–260 (1972)

    Article  Google Scholar 

  7. De Pauw, T.: An example pertaining to the failure of the Besicovitch–Federer structure theorem in Hilbert space (preprint)

  8. De Pauw, T., Hardt, R.: Rectifiable and flat \(G\) chains in a metric space. Am. J. Math. 134(1), 1–69 (2012)

    Article  MATH  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  10. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    MATH  Google Scholar 

  11. Kadets, M.I., Snobar, M.G.: Certain functionals on the Minkowski compactum. Mat. Zametki 10, 453–457 (1971)

    MathSciNet  MATH  Google Scholar 

  12. Kechris, A.S.: Classical Descriptive Set Theory. Graduate texts in mathematics, vol. 156. Springer, New York (1995)

    MATH  Google Scholar 

  13. Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Am. Math. Soc. 121(1), 113–123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces I. In: Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, New York (1977)

  15. Mattila, P.: Smooth maps, null-sets for integralgeometric measure and analytic capacity. Ann. Math. (2) 123(2), 303–309 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mel’nikov, M.S.: Dependence of volume and diameter of sets in \(n\)-dimensional Banach space. Uspehi Mat. Nauk. 18(4), 165–170 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Mickle, E.J.: On a decompostion theorem of Federer. Trans. Am. Math. Soc. 92, 322–335 (1959)

    MathSciNet  MATH  Google Scholar 

  18. Parthasarathy, K.R.: Probability Measures in Metric Spaces. Academic Press, New York (1967)

    Book  Google Scholar 

  19. Solecki, S.: Amenability, free subgroups, and Haar null sets in non-locally compact groups. Proc. Lond. Math. Soc. (3) 93(3), 693–722 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Urysohn, P.: Mittlere Breite und Volumen der konvexen körper im \(n\)-dimensionalen Raume. Matem. Sb. SSSR 31, 477–486 (1924)

    Google Scholar 

  21. Wagon, S.: The Banach-Tarski paradox. In: Encyclopedia of Mathematics and Its Applications, vol. 24. Cambridge University Press, Cambridge (1985) (With a foreword by Jan Mycielski)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry De Pauw.

Additional information

T. De Pauw was supported in part by the Grant ANR-12-BS01-0014-01 Geometrya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouafia, P., De Pauw, T. Integral geometric measure in separable Banach space. Math. Ann. 363, 269–304 (2015). https://doi.org/10.1007/s00208-014-1165-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1165-9

Navigation