Skip to main content
Log in

On Brauer groups of double covers of ruled surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(X\) be a smooth double cover of a geometrically ruled surface defined over a separably closed field of characteristic different from \(2\). The main result of this paper is a finite presentation of the \(2\)-torsion in the Brauer group of \(X\) with generators given by central simple algebras over the function field of \(X\) and relations coming from the Néron–Severi group of \(X\). In particular, the result gives a central simple algebra representative for the unique nontrivial Brauer class on any Enriques surface. An example demonstrating the applications to the study of rational points is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. A Magma [3] script verifying these claims and all other computational claims in this section can be found with the arXiv distribution of this article.

References

  1. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, 2nd edn. Springer, Berlin (2004)

  2. Beauville, A.: Complex algebraic surfaces. In: London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996). (Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid)

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). [Computational algebra and number theory (London, 1993)]

  4. Creutz, B., Viray, B.: Two torsion in the Brauer group of a hyperelliptic curve. Manuscripta Math. (2014). doi:10.1007/s00229-014-0721-7

  5. Gille, P., Szamuely, T.: Central simple algebras and Galois cohomology. In: Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006)

  6. Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas, pp. 88–188. North-Holland, Amsterdam; Masson, Paris (1968). (French)

  7. Harari, D.: Obstructions de Manin transcendantes, number theory (Paris, 1993). In: London Math. Soc. Lecture Note Ser., vol. 235, pp. 75–87. Cambridge Univ. Press, Cambridge (1996). (French)

  8. Harari, D., Skorobogatov, A.: Non-abelian descent and the arithmetic of Enriques surfaces. Int. Math. Res. Not. 52, 3203–3228 (2005)

    Article  MathSciNet  Google Scholar 

  9. Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

  10. Hassett, B., Várilly-Alvarado, A.: Failure of the Hasse principle on general K3 surfaces. J. Inst. Math. Jussieu 12(4), 853–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassett, B., Várilly-Alvarado, A., Varilly, P.: Transcendental obstructions to weak approximation on general K3 surfaces. Adv. Math. 228(3), 1377–1404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ieronymou, E.: Diagonal quartic surfaces and transcendental elements of the Brauer groups. J. Inst. Math. Jussieu 9(4), 769–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kato, K.: A Hasse principle for two-dimensional global fields. J. Reine Angew. Math. 366, 142–183 (1986). (With an appendix by Jean-Louis Colliot-Thélène)

  14. Kresch, A., Tschinkel, Y.: Effectivity of Brauer–Manin obstructions on surfaces. Adv. Math. 226(5), 4131–4144 (2011)

  15. Manin, Y.I.: Le groupe de Brauer–Grothendieck en géométrie diophantienne. Actes du Congrè International des Mathématiciens (Nice, 1970), pp. 401–411. Gauthier-Villars, Paris (1971)

  16. Milnor, J.: Singular points of complex hypersurfaces. In: Annals of Mathematics Studies, vol. 61. Princeton University Press, Princeton (1968)

  17. Poonen, B., Schaefer, E.F.: Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488, 141–188 (1997)

  18. Preu, T.: Example of a transcendental 3-torsion Brauer–Manin obstruction on a diagonal quartic surface. In: Skorobogatov, A.N. (ed.) Torsors, Étale Homotopy and Applications to Rational Points. London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (2013)

  19. Skorobogatov, A.N.: Torsors and rational points. In: Cambridge Tracts in Mathematics, vol. 144. Cambridge University Press, Cambridge (2001)

  20. Skorobogatov, A.N., Swinnerton-Dyer, P.: 2-Descent on elliptic curves and rational points on certain Kummer surfaces. Adv. Math. 198(2), 448–483 (2005)

  21. Skorobogatov, A.N., Zarhin, Y.G.: The Brauer group of Kummer surfaces and torsion of elliptic curves. J. Reine Angew. Math 666, 115–140 (2012)

  22. Wittenberg, O.: Transcendental Brauer–Manin obstruction on a pencil of elliptic curves. In: Arithmetic of Higher-Dimensional Algebraic Varieties (Palo Alto, CA, 2002). Progr. Math., vol. 226, pp. 259–267. Birkhäuser, Boston (2004)

Download references

Acknowledgments

Bianca Viray would like to thank Dan Abramovich, Asher Auel, Jean-Louis Colliot-Thélène, and Bjorn Poonen for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Creutz.

Additional information

B. Viray was partially supported by NSF Grant DMS-1002933.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutz, B., Viray, B. On Brauer groups of double covers of ruled surfaces. Math. Ann. 362, 1169–1200 (2015). https://doi.org/10.1007/s00208-014-1153-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1153-0

Mathematics Subject Classification

Navigation