Skip to main content
Log in

Heat kernel on smooth metric measure spaces with nonnegative curvature

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We derive a local Gaussian upper bound for the \(f\)-heat kernel on complete smooth metric measure space \((M,g,e^{-f}dv)\) with nonnegative Bakry–Émery Ricci curvature. As applications, we obtain a sharp \(L_f^1\)-Liouville theorem for \(f\)-subharmonic functions and an \(L_f^1\)-uniqueness property for nonnegative solutions of the \(f\)-heat equation, assuming \(f\) is of at most quadratic growth. In particular, any \(L_f^1\)-integrable \(f\)-subharmonic function on gradient shrinking and steady Ricci solitons must be constant. We also provide explicit \(f\)-heat kernel for Gaussian solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakry, D., Emery, M.: Diffusion hypercontractivitives. In: Séminaire de Probabilités, vol. XIX (1983/1984). Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

  2. Bakry, D., Qian, Z.-M.: Some new results on eigenvectors via dimension, diameter and Ricci curvature. Adv. Math. 155, 98–153 (2000)

    Article  MathSciNet  Google Scholar 

  3. Brighton, K.: A Liouville-type theorem for smooth metric measure spaces. J. Geom. Anal. 23, 562–570 (2013)

    Article  MathSciNet  Google Scholar 

  4. Buser, P.: A note on the isoperimetric constant. Ann. Sci. Ecole Norm. Sup. 15, 213–230 (1982)

    MathSciNet  Google Scholar 

  5. Cao, H.-D.: Recent Progress on Ricci Solitons. Recent Advances in Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–38. International Press, Somerville (2010)

  6. Cao, H.-D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85, 175–186 (2010)

    MathSciNet  Google Scholar 

  7. Catino, G., Mantegazza, C., Mazzieri, L., Rimoldi, M.: Locally conformally flat quasi-Einstein manifolds. J. Reine Ang. Math. 675, 181–189 (2013)

    MathSciNet  Google Scholar 

  8. Charalambous, N., Zhiqin, L.: Heat kernel estimates and the essential spectrum on weighted manifolds. J. Geom. Anal. (2013). doi:10.1007/s12220-013-9438-1

  9. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    MathSciNet  Google Scholar 

  10. Cheng, S.-Y., Li, P., Yau, S.-T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Am. J. Math. 103, 1021–1063 (1981)

    Article  MathSciNet  Google Scholar 

  11. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge U Press, Cambridge (1989)

  12. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58, 99–119 (1992)

    Article  MathSciNet  Google Scholar 

  13. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds (Russian). Math. Sb. 182, 55–87 (1991). (translation in Math. USSR Sb. 72, 47–77 (1992))

  14. Grigor’yan, A.: Heat Kernels on Weighted Manifolds and Applications, The Ubiquitous Heat Kernel. Contemporary Mathematics, vol. 398, pp. 93–191. American Mathematical Society, Providence (2006)

  15. Hamilton, R.: The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Boston (1995)

  16. Li, J.-F., Xu, X.: Differential Harnack inequalities on Riemannian manifolds I : linear heat equation. Adv. Math. 226, 4456–4491 (2011)

    Article  MathSciNet  Google Scholar 

  17. Li, P.: Uniqueness of \(L^1\) solutions for the Laplace equation and the heat equation on Riemannian manifolds. J. Differ. Geom. 20, 447–457 (1984)

    Google Scholar 

  18. Li, P.: Harmonic functions and applications to complete manifolds. XIV Escola de Geometria diferencial, IMPA, Rio de Janeiro, 230 pp (2006). ISBN: 85-244-0249-0

  19. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  20. Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pure Appl. 84, 1295–1361 (2005)

    Article  Google Scholar 

  21. Lott, J.: Some geometric properties of the Bakry–Émery–Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

    Article  MathSciNet  Google Scholar 

  22. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  23. Moser, J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)

    Article  Google Scholar 

  24. Munteanu, O., Sesum, N.: On gradient Ricci solitons. J. Geom. Anal. 23, 539–561 (2013)

    Article  MathSciNet  Google Scholar 

  25. Munteanu, O., Wang, J.: Smooth metric measure spaces with nonnegative curvature. Commun. Anal. Geom. 19, 451–486 (2011)

    Article  MathSciNet  Google Scholar 

  26. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)

    Article  MathSciNet  Google Scholar 

  27. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 1992(2), 27–38 (1992). doi:10.1155/S1073792892000047

  28. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)

    MathSciNet  Google Scholar 

  29. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

  30. Wei, G.-F., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)

    MathSciNet  Google Scholar 

  31. Wu, J.-Y.: \(L^p\)-Liouville theorems on complete smooth metric measure spaces. Bull. Sci. Math. (2013). doi: 10.1016/j.bulsci.2013.07.002

    Google Scholar 

  32. Zhu, S.-H.: The comparison geometry of Ricci curvature. In: Comparison Geometry (Berkeley, CA, 1993–94). Mathematical Sciences Research Institute Publications, vol. 30, pp. 221–262. Cambridge Univ. Press, Cambridge (1997)

Download references

Acknowledgments

The authors thank Professors Xiaodong Cao and Zhiqin Lu for helpful discussions. The second author thanks Professors Xianzhe Dai and Guofang Wei for helpful discussions, constant encouragement and support. The first author is partially supported by NSFC (11101267, 11271132) and the China Scholarship Council (08310431). The second author is partially supported by an AMS-Simons travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu.

Appendix

Appendix

In the appendix we solve for the \(f\)-heat kernel of \(1\)-dimensional steady Gaussian soliton \((\mathbb {R},\ g_0, e^{-f}dx)\), where \(g_0\) is the Euclidean metric, and \(f=k x\) with \(k=\pm 1\). The method is standard separation of variables. Suppose the \(f\)-heat kernel is of the form

$$\begin{aligned} H(x,y,t)= \varphi (y)\phi (x)\psi (t)\times \exp \left( -\frac{|x-y|^2}{4t}\right) . \end{aligned}$$

For a fixed \(y\), we get

$$\begin{aligned} \begin{aligned} H_t&= \varphi \phi e^{-\frac{|x-y|^2}{4t}}\left( \psi _t+\psi \frac{|x-y|^2}{4t^2}\right) ,\\ H_x&= \varphi \psi e^{-\frac{|x-y|^2}{4t}}\left( \phi _x-\phi \frac{x-y}{2t}\right) ,\\ H_{xx}&= \varphi \psi e^{-\frac{|x-y|^2}{4t}} \left( \phi _{xx}+\phi \frac{|x-y|^2}{4t^2}-\phi _x\frac{x-y}{t}-\phi \frac{1}{2t}\right) . \end{aligned} \end{aligned}$$

So \(H_t=H_{xx}-f_xH_x\) implies

$$\begin{aligned} \begin{aligned} \phi \left( \psi _t+\psi \frac{|x-y|^2}{4t^2}\right)&= \psi \left( \phi _{xx}+\phi \frac{|x-y|^2}{4t^2}-\phi _x\frac{x-y}{t}-\frac{\phi }{2t}\right) \nonumber \\&\quad -k\psi \left( \phi _x-\phi \frac{x-y}{2t}\right) . \end{aligned} \end{aligned}$$

That is,

$$\begin{aligned} \frac{\psi _t}{\psi }= \frac{\phi _{xx}-k\phi _x}{\phi }-\frac{x-y}{2t}\cdot \frac{2\phi _x-k\phi }{\phi }-\frac{1}{2t}. \end{aligned}$$

Therefore

$$\begin{aligned} \begin{aligned} \frac{\phi _{xx}-k\phi _x}{\phi }&= C_1, \frac{(2\phi _x-k\phi )(x-y)}{\phi } = C_2, \frac{\psi _t}{\psi } = C_1-\frac{1+C_2}{2t}, \end{aligned} \end{aligned}$$

From above, their solutions are

$$\begin{aligned} \begin{aligned} \phi&= C_3 e^{\frac{1}{2}kx},\\ \psi&= C_4 \frac{1}{\sqrt{t}}e^{-4/t}, \end{aligned} \end{aligned}$$

where \(C_1\), \(C_2\), \(C_3\), \(C_4\) are constants.

By the initial condition \(\lim _{t\rightarrow 0}u(x,t)=\delta _{f,y}(x)\) we get \(\varphi (y)= e^{\frac{1}{2}ky}\), and \(C_3C_4=\frac{1}{2\sqrt{\pi }}\). Therefore the \(f\)-heat kernel is

$$\begin{aligned} H(x,y,t)=\frac{e^{\pm \frac{x+y}{2}}\cdot e^{-t/4}}{(4\pi t)^{1/2}} \times \exp \left( -\frac{|x-y|^2}{4t}\right) . \end{aligned}$$

It is easy to check that \(\int _{\mathbb {R}}H(x,y,t)e^{-f(x)}dx=1\), which confirms the stochastic completeness proved in Lemma 4.1.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JY., Wu, P. Heat kernel on smooth metric measure spaces with nonnegative curvature. Math. Ann. 362, 717–742 (2015). https://doi.org/10.1007/s00208-014-1146-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1146-z

Mathematics Subject Classification

Navigation