Advertisement

Mathematische Annalen

, Volume 361, Issue 3–4, pp 741–785 | Cite as

Vers le socle localement analytique pour \({\mathrm {GL}}_n\) II

  • Christophe BreuilEmail author
Article

Résumé

On conjecture que certaines représentations localement \({\mathbb Q}_{p}\)-analytiques irréductibles de \({\mathrm {GL}}_n(L)\) pour \([L:{\mathbb Q}_{p}]<\infty \) apparaissent en sous-objet dans des espaces Hecke-isotypiques de formes automorphes \(p\)-adiques. Lorsque \(L={\mathbb Q}_{p}\), on démontre quelques résultats partiels dans la direction de cette conjecture en utilisant des résultats récents sur les variétés de Hecke et une nouvelle formule d’adjonction pour le foncteur localement analytique de Jacquet-Emerton.

References

  1. 1.
    Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Astérisque 324 (2009)Google Scholar
  2. 2.
    Bergdall, J.: On the variation of \((\varphi ,\Gamma )\)-modules over p-adic families of automorphic forms thèse, Université Brandeis (2013)Google Scholar
  3. 3.
    Bergdall, J.: lettre à l’auteur, juillet (2013)Google Scholar
  4. 4.
    Bergdall, J., Chojecki, P.: Ordinary representations and companion points for \(U(3)\) in the indecomposable case. prépublication (2014)Google Scholar
  5. 5.
    Berger, L., Breuil, C.: Sur quelques représentations potentiellement cristallines de \(\text{ GL }_2(\mathbb{Q}_p)\). Astérisque 330, 155–211 (2010)Google Scholar
  6. 6.
    Breuil, C.: Vers le socle localement analytique pour \({\text{ GL }_n}\) I. prépublication (2013)Google Scholar
  7. 7.
    Breuil, C.: Towards the locally analytic socle for \(\text{ GL }_n\), cours au B.I.C.M.R. de Pékin, mai disponible à. http://www.math.u-psud.fr/~breuil/PUBLICATIONS/Pekin (2013)
  8. 8.
    Breuil, C., Herzig, F.: Ordinary representations of \(G(\mathbb{Q}_p)\) and fundamental algebraic representations. prépublication 2012, révisée (2013)Google Scholar
  9. 9.
    Buzzard, K.: Eigenvarieties. London Mathematical Society. Lecture Note Series 320, 59–120 (2007)Google Scholar
  10. 10.
    Chenevier, G.: On the infinite fern of Galois representations of unitary type. Ann. Scient. É.N.S. 44, 963–1019 (2011)Google Scholar
  11. 11.
    Chenevier, G.: Une application des variétés de Hecke des groupes unitaires. prépublication (2009)Google Scholar
  12. 12.
    Ding, Y.: Formes modulaires \(p\)-adiques sur les courbes de Shimura unitaires et compatibilité local-global. thèse, en préparationGoogle Scholar
  13. 13.
    Emerton, M.: Jacquet modules of locally analytic representations of \(p\)-adic reductive groups I. Constructions and first properties. Ann. Scient. É.N.S. 39, 775–839 (2006)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Emerton, M.: Jacquet modules of locally analytic representations of \(p\)-adic reductive groups II. The relation to parabolic induction. à paraître à J. Institut Math. JussieuGoogle Scholar
  15. 15.
    Emerton, M.: On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Invent. Math. 164, 1–84 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Emerton, M.: Locally analytic vectors in representations of locally \(p\)-adic analytic groups. à paraître à Memoirs American Mathematical SocietyGoogle Scholar
  17. 17.
    Haines, T.J., Ngô, B.C.: Alcoves associated to special fibers of local models. Am. J. Math. 124, 1125–1152 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hill, R., Loeffler, D.: Emerton’s Jacquet functors for non-Borel parabolic subgroups. Doc. Math. 16, 1–31 (2011)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Humphreys, J.: Representations of Semisimple Lie Algebras in the BGG Category \(\cal {O}\). Graduate Studies in Mathematics 94 (2008)Google Scholar
  20. 20.
    Jones, O.: An analogue of the BGG resolution for locally analytic principal series. J. Number Theory 131, 1616–1640 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kedlaya, K., Liu, R.: On families of \((\varphi,\Gamma )\)-modules. Algebra Number Theory 4, 943–967 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kedlaya, K., Pottharst, J., Xiao, L.: Cohomology of arithmetic families of \((\varphi ,\Gamma )\)-modules. à paraître à Journal of American Mathematical SocietyGoogle Scholar
  23. 23.
    Loeffler, D.: Overconvergent algebraic automorphic forms. Proc. Lond. Math. Soc. 102, 193–228 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Orlik, S., Schraen, B.: The Jordan-Hölder series of the locally analytic Steinberg representation. à paraître à Documenta MathematicaGoogle Scholar
  25. 25.
    Orlik, S., Strauch, M.: On Jordan-Hölder series of some locally analytic representations. à paraître à Journal of American Mathematical SocietyGoogle Scholar
  26. 26.
    Orlik, S., Strauch, M.: On the irreducibility of locally analytic principal series representations. Represent. Theory 14, 713–746 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Prasad, D.: Locally algebraic representations of \(p\)-adic groups, appendice à \(U(g)\)-finite locally analytic representations (Schneider P., Teitelbaum J.). Represent. Theory 5, 111–128 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Schneider, P., Teitelbaum, J.: Locally analytic distributions and \(p\)-adic representation theory, with applications to \(GL_2\). J. Am. Math. Soc. 15, 443–468 (2001)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Schneider, P., Teitelbaum, J.: Algebras of \(p\)-adic distributions and admissible representations. Invent. Math. 153, 145–196 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Schneider, P., Teitelbaum, J.: Banach space representations and Iwasawa theory. Israel J. Math. 127, 359–380 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Sorensen, C.: Eigenvarieties and invariant norms. prépublication (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.C.N.R.S. et Université Paris-SudOrsay CedexFrance

Personalised recommendations