Mathematische Annalen

, Volume 361, Issue 3–4, pp 689–723 | Cite as

Geometric Reid’s recipe for dimer models

  • Raf Bocklandt
  • Alastair CrawEmail author
  • Alexander Quintero Vélez


Crepant resolutions of three-dimensional toric Gorenstein singularities are derived equivalent to noncommutative algebras arising from consistent dimer models. By choosing a special stability parameter and hence a distinguished crepant resolution \(Y\), this derived equivalence generalises the Fourier-Mukai transform relating the \(G\)-Hilbert scheme and the skew group algebra \(\mathbb {C}[x,y,z]*G\) for a finite abelian subgroup of \(\mathrm{SL }(3,\mathbb {C})\). We show that this equivalence sends the vertex simples to pure sheaves, except for the zero vertex which is mapped to the dualising complex of the compact exceptional locus. This generalises results of Cautis–Logvinenko (J Reine Angew Math 636:193–236, 2009) and Cautis–Craw–Logvinenko  (J Reine Angew Math arXiv:1205.3110, 2014) to the dimer setting, though our approach is different in each case. We also describe some of these pure sheaves explicitly and compute the support of the remainder, providing a dimer model analogue of results from Logvinenko (J Algebra 324:2064–2087, 2010).



A. Craw thanks Akira Ishii and Kazushi Ueda for a preliminary draft of their preprint [20]. Thanks also to Alastair King for a useful remark, and to the anonymous referee for many helpful comments. A. Craw and A. Quintero Vélez were supported in part by EPSRC grant EP/G004048/1.


  1. 1.
    Bender, M., Mozgovoy, S.: Crepant resolutions and brane tilings II: Tilting bundles (Preprint). arXiv: 0909.2013
  2. 2.
    Bocklandt, R.: Consistency conditions for dimer models. Glasg. Math. J. 54(2), 429–447 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (electronic) (2001)Google Scholar
  5. 5.
    Broomhead, N.: Dimer models and Calabi–Yau algebras. Mem. Am. Math. Soc. 215(1011):viii+86 (2012)Google Scholar
  6. 6.
    Cautis, S., Craw, A., Logvinenko, T.: Derived Reid’s recipe for abelian subgroups of \({SL}_3(\mathbb{C})\). J. Reine Angew. Math. (to appear, 2014). arXiv: 1205.3110
  7. 7.
    Cautis, S., Logvinenko, T.: A derived approach to geometric McKay correspondence in dimension three. J. Reine Angew. Math. 636, 193–236 (2009)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Craw, A.: An explicit construction of the McKay correspondence for \(A\)-Hilb \(\mathbb{C}^3\). J. Algebra 285(2), 682–705 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Craw, A., Ishii, A.: Flops of \(G\)-Hilb and equivalences of derived categories by variation of GIT quotient. Duke Math. J. 124(2), 259–307 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Craw, A., Quintero Vélez, A.: Cellular resolutions of noncommutative toric algebras from superpotentials. Adv. Math. 229(3), 1516–1554 (2012)Google Scholar
  11. 11.
    Craw, A., Quintero Vélez, A.: Cohomology of wheels on toric varieties. Hokkaido Math. J. (to appear, 2014). arXiv: 1206.5956
  12. 12.
    Crawley-Boevey, W.: On the exceptional fibres of Kleinian singularities. Am. J. Math. 122(5), 1027–1037 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Davison, B.: Consistency conditions for brane tilings. J. Algebra 338, 1–23 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gonzalez-Sprinberg, G., Verdier, J.-L.: Construction géométrique de la correspondance de McKay. Ann. Sci. École Norm. Sup. (4) 16(3), 409–449 (1983)Google Scholar
  15. 15.
    Gulotta, D.: Properly ordered dimers, \(R\)-charges, and an efficient inverse algorithm. J. High Energy Phys. 10, 014, 31 (2008)Google Scholar
  16. 16.
    Hartshorne, R.: Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, vol. 20. Springer, Berlin (1966)Google Scholar
  17. 17.
    Ishii, A., Ueda, K.: On moduli spaces of quiver representations associated with dimer models. In: Higher Dimensional Algebraic Varieties and Vector Bundles, RIMS Kôkyûroku Bessatsu, B9, pp. 127–141. Res. Inst. Math. Sci. (RIMS), Kyoto (2008)Google Scholar
  18. 18.
    Ishii, A., Ueda, K.: Dimer models and the special McKay correspondence, (2009). (Preprint) arXiv:0905.0059, v2
  19. 19.
    Ishii, A., Ueda, K.: A note on consistency conditions on dimer models. In: Higher Dimensional Algebraic Geometry, RIMS Kôkyûroku Bessatsu, B24, pp. 143–164. Res. Inst. Math. Sci. (RIMS), Kyoto (2011)Google Scholar
  20. 20.
    Ishii, A., Ueda, K.: Dimer models and crepant resolutions (2013) (Preprint). arXiv:1303.4028
  21. 21.
    Ito, Y., Nakajima, H.: McKay correspondence and Hilbert schemes in dimension three. Topology 39(6), 1155–1191 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kapranov, M., Vasserot, E.: Kleinian singularities, derived categories and Hall algebras. Math. Ann. 316(3), 565–576 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kennaway, K.: Brane tilings. Int. J. Mod. Phys. A 22:2977–3038 (2007) (Preprint). arXiv:0710.1660
  24. 24.
    King, A.: Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Logvinenko, T.: Reid’s recipe and derived categories. J. Algebra 324, 2064–2087 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Mozgovoy, S.: Crepant resolutions and brane tilings I: Toric realization (Preprint). arXiv: 0908.3475
  27. 27.
    Mozgovoy, S., Reineke, M.: On the noncommutative Donaldson–Thomas invariants arising from brane tilings. Adv. Math. 223(5), 1521–1544 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Reid, M.: McKay correspondence.
  29. 29.
    Tapia Amador, J.: Combinatorial Reid’s recipe for dimer models. Work in progressGoogle Scholar
  30. 30.
    Wilson, P.: The Kähler cone on Calabi–Yau threefolds. Invent. Math. 107(3), 561–583 (1992)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Raf Bocklandt
    • 1
  • Alastair Craw
    • 2
    Email author
  • Alexander Quintero Vélez
    • 3
  1. 1.Korteweg de Vries Instituut voor WiskundeUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Mathematical SciencesUniversity of BathBathUK
  3. 3.Departamento de MatemáticasUniversidad del Valle, Ciudadela Universitaria MeléndezCaliColombia

Personalised recommendations