Advertisement

Mathematische Annalen

, Volume 361, Issue 3–4, pp 611–645 | Cite as

Equivalence of ELSV and Bouchard–Mariño conjectures for \(r\)-spin Hurwitz numbers

  • S. ShadrinEmail author
  • L. Spitz
  • D. Zvonkine
Article

Abstract

We propose two conjectures on Hurwitz numbers with completed \((r+1)\)-cycles, or, equivalently, on certain relative Gromov-Witten invariants of the projective line. The conjectures are analogs of the ELSV formula and of the Bouchard–Mariño conjecture for ordinary Hurwitz numbers. Our \(r\)-ELSV formula is an equality between a Hurwitz number and an integral over the space of \(r\)-spin structures, that is, the space of stable curves with an \(r\)th root of the canonical bundle. Our \(r\)-BM conjecture is the statement that \(n\)-point functions for Hurwitz numbers satisfy the topological recursion associated with the spectral curve \(x = -y^r + \log y\) in the sense of Chekhov, Eynard, and Orantin. We show that the \(r\)-ELSV formula and the \(r\)-BM conjecture are equivalent to each other and provide some evidence for both.

Notes

Acknowledgments

L. S. and S. S. were supported by the Netherlands Organization for Scientific Research. D. Z. was supported by the grant ANR-09-JCJC-0104-01. The \(r\)-ELSV formula was conjectured by D. Z. [38] who had important discussions about it with many people before this paper appeared. We are particularly grateful to Alessandro Chiodo, Maxim Kazarian, Sergey Lando, Sergei Natanzon, Christian Okonek, Rahul Pandharipande, Dmitri Panov, Mathieu Romagny, Mikhail Shapiro, and Claire Voisin. We also thank Gaëtan Borot, Leonid Chekhov, Petr Dunin-Barkowski, Bertrand Eynard, Motohico ulase, and Nicolas Orantin for plenty of helpful discussions on closely related topics and teaching us the methods of spectral curve topological recursion.

References

  1. 1.
    Abramovich, D., Jarvis, T.J.: Moduli of twisted spin curves. Proc. Am. Math. Soc. 131(3), 685–699 (2003). math.AG/0104154
  2. 2.
    Borot, G., Eynard, B., Mulase, M., Safnuk, B.: A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys. 61(2), 522–540 (2011). arXiv:0906.1206
  3. 3.
    Bouchard, V., Mariño, M.: Hurwitz numbers, matrix models and enumerative geometry. From Hodge theory to integrability and TQFT tt*-geometry. Proceedings of Symposium on Pure Mathematics, vol. 78, pp. 263–283. American Mathematical Society (2008). arXiv:0709.1458
  4. 4.
    Caporaso, L., Casagrande, C., Cornalba, M.: Moduli of roots of line bundles on curves. Trans. Am. Math. Soc. 359(8), 3733–3768 (2007). math.AG/0404078
  5. 5.
    Chekhov, L., Eynard, B.: Matrix eigenvalue model: Feynman graph technique for all genera. J. High Energy Phys. 12(026), 29 (2006). math-ph/0604014
  6. 6.
    Chiodo, A.: Stable twisted curves and their \(r\)-spin structures. Ann. Inst. Fourier (Grenoble) 58(5), 1635–1689 (2008). math.AG/0603687
  7. 7.
    Chiodo, A.: Towards an enumerative geometry of the moduli space of twisted curves and rth roots. Compos. Math. 144(6), 1461–1496 (2008). math.AG/0607324v2
  8. 8.
    Chiodo, A.: Witten’s top Chern class via K-theory. J. Algebr. Geom. 15(4), 681–707 (2006). math.AG/0210398
  9. 9.
    Chiodo, A., Ruan, Y.: Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math. 182(1), 117–165 (2010). arXiv:0812.4660
  10. 10.
    Chiodo, A., Zvonkine, D.: Twisted Gromov–Witten r-spin potential and Givental’s quantization. Adv. Theor. Math. Phys. 13(5), 1335–1369 (2009). arXiv:0711.0339
  11. 11.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W-function. Adv. Comput. Math. 5, 329–359 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion procedure. Commun. Math. Phys. (to appear). arXiv:1211.4021
  13. 13.
    Dunin-Barkowski, P., Shadrin, S., Spitz, L.: Givental graphs and inversion symmetry. Lett. Math. Phys. 103(5), 533–557 (2013). arxiv:1201:4930
  14. 14.
    Dumitrescu, O., Mulase, M., Safnuk, B., Sorkin, A.: The spectral curve of the Eynard–Orantin recursion via the Laplace transform. arXiv:1202.1159
  15. 15.
    Ekedahl, T., Lando, S.K., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001). math.AG/0004096
  16. 16.
    Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. arXiv:1110.2949
  17. 17.
    Eynard, B., Mulase, M., Safnuk, B.: The Laplace transform of the cut-and-join equation and the Bouchard–Mario conjecture on Hurwitz numbers. Publ. Res. Inst. Math. Sci. 47(2), 629670 (2011). arXiv:0907.5224
  18. 18.
    Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007). arXiv:math-ph/0702045
  19. 19.
    Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the \(r\)-spin Witten conjecture. Ann. Sci. Éc. Norm. Supér. (4) 43(4), 621–658 (2010). math.AG/0612510
  20. 20.
    Givental, A.: Gromov–Witten invariants and quantization of quadratic hamiltonians. Mosc. Math. J. 1(4), 551–568 (2001). math/0108100
  21. 21.
    Gukov, S., Sułkowski, P.: A-polynomial, B-model, and quantization. J. High Energy Phys. 2(070), 56 (2012). arXiv:1108.0002v1
  22. 22.
    Itzykson, C., Zuber, J.-B.: The planar approximation II. J. Math. Phys. 21(3), 411–421 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Jarvis, T.J.: Geometry of moduli of higher spin curves. Int. J. Math. 11, 637–663 (2000). arXiv:math/9809138
  24. 24.
    Kazarian, M., Lando, S.: An algebro-geometric proof of Witten’s conjecture. J. Am. Math. Soc. 20(4), 1079–1089 (2007). arXiv:math/0601760
  25. 25.
    Kerov, S., Olshanski, G.: Polynomial functions on the set of Young diagrams. C. R. Acad. Sci. Paris Sér. I Math 319(2), 121–126 (1994)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Luke, Y.L.: The special functions and their approximations, vol. I. Academic Press, New York (1969)zbMATHGoogle Scholar
  27. 27.
    Milanov, T.: The Eynard–Orantin recursion for the total ancestor potential. arXiv:1211.5847
  28. 28.
    Mulase, M., Shadrin, S., Spitz, L.: The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures. Commun. Number Theory Phys. (to appear) arXiv:1301.5580
  29. 29.
    Mumford, D.: Arithmetics and geometry. In: Artin, M., Tate, J. (eds.) Towards enumerative geometry on the moduli space of curves, pp. 271–328. Birkhäuser, Basel (1983)Google Scholar
  30. 30.
    Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7(4), 447–453 (2000). math.AG/0004128
  31. 31.
    Okounkov, A., Pandharipande, R.: Gromov–Witten theory, Hurwitz theory, and completed cycles. Ann. Math. (2). 163(2), 517–560 (2006). math.AG/0204305
  32. 32.
    Pixton, A., Pandharipande, R., Zvonkine, D.: Relations on \({\overline{\cal M}}\) via 3-spin structures. arXiv:1303.1043
  33. 33.
    Polishchuk, A., Vaintrob, A.: Algebraic construction of Witten’s top Chern class. Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemporary Mathematics, vol. 276, pp. 229–249, American Mathematical Society, Providence (2001). math.AG/0011032
  34. 34.
    Shadrin, S.: BCOV theory via Givental group action on cohomological fields theories. Mosc. Math. J. 9(2), 411–429 (2009). arXiv:0810.0725
  35. 35.
    Shadrin, S., Zvonkine, D.: Intersection numbers with Witten’s top Chern class. Geom. Topol. 12(4), 713–745 (2008). math.AG/0601075
  36. 36.
    Vakil, R.: The moduli space of curves and Gromov–Witten theory. Enumerative invariants in algebraic geometry and string theory. Lecture Notes in Mathematics, pp. 143–198. Springer, Berlin, 2008 (1947). math.AG/0602347
  37. 37.
    Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. Topological methods in modern mathematics (Stony Brook, NY, 1991), pp. 235–269, Publish or Perish, Houston, TX (1993)Google Scholar
  38. 38.
    Zvonkine, D.: A preliminary text on the \(r\)-ELSV formula. Preprint (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Institut de Mathématiques de Jussieu-Paris Rive Gauche and CNRSParis Cedex 05Paris

Personalised recommendations