Advertisement

Mathematische Annalen

, Volume 361, Issue 3–4, pp 563–582 | Cite as

\(W^*\)-Superrigidity for arbitrary actions of central quotients of braid groups

  • Ionut Chifan
  • Adrian IoanaEmail author
  • Yoshikata Kida
Article

Abstract

For any \(n\geqslant 4\) let \(\tilde{B}_n=B_n/Z(B_n)\) be the quotient of the braid group \(B_n\) through its center. We prove that any free ergodic probability measure preserving (pmp) action \(\tilde{B}_n\curvearrowright (X,\mu )\) is virtually \(\hbox {W}^*\)-superrigid in the following sense: if \(L^{\infty }(X)\rtimes \tilde{B}_n\cong L^{\infty }(Y)\rtimes \Lambda \), for an arbitrary free ergodic pmp action \(\Lambda \curvearrowright (Y,\nu )\), then the actions \(\tilde{B}_n\curvearrowright X,\Lambda \curvearrowright Y\) are virtually conjugate. Moreover, we prove that the same holds if \(\tilde{B}_n\) is replaced with a finite index subgroup of the direct product \(\tilde{B}_{n_1}\times \cdots \times \tilde{B}_{n_k}\), for some \(n_1,\ldots ,n_k\geqslant 4\). The proof uses the dichotomy theorem for normalizers inside crossed products by free groups from Popa and Vaes (212, 141–198, 2014) in combination with the OE superrigidity theorem for actions of mapping class groups from Kida (131, 99–109, 2008). Similar techniques allow us to prove that if a group \(\Gamma \) is hyperbolic relative to a finite family of proper, finitely generated, residually finite, infinite subgroups, then the \(\hbox {II}_1\) factor \(L^{\infty }(X)\rtimes \Gamma \) has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic pmp action \(\Gamma \curvearrowright (X,\mu )\).

Notes

Acknowledgments

We would like to thank Rémi Boutonnet and Cyril Houdayer for useful comments. The first author is especially grateful to Denis Osin for kindly pointing out to him that the main results of this paper also apply to the families of groups described in the Sect. 5.

References

  1. 1.
    Birman, J.S., Hilden, H.M.: On isotopies of homeomorphisms of Riemann surfaces. Ann. Math. 97(2), 424–439 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Boutonnet, R.: \(\text{ W }^*\)-Superrigidity of mixing Gaussian actions of rigid groups. Adv. Math. 244, 69–90 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bowditch, B.H.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22, 1250016 (2012) p. 66Google Scholar
  4. 4.
    Bozejko, M., Picardello, M.A.: Weakly amenable groups and amalgamated products. Proc. Am. Math. Soc. 117, 1039–1046 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Connes, A.: Classification of injective factors. Ann. Math. 104(2), 73–115 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chifan, I., Peterson, J.: Some unique group measure space decomposition results. Duke Math. J. 162(11), 1923–1966 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chifan, I., Sinclair, T.: On the structural theory of \(\text{ II }_1\) factors of negatively curved groups. Ann. Sci. École Norm. Sup. 46, 1–33 (2013)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Chifan, I., Sinclair, T., Udrea, B.: On the structural theory of \(\text{ II }_1\) factors of negatively curved groups, II. Actions by product groups. Adv. Math. 245, 208–236 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dahmani, F., Guirardel, V., Osin, D.V.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. arXiv:1111.7048 (preprint)
  10. 10.
    Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8, 810–840 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, Princeton (2011)zbMATHGoogle Scholar
  12. 12.
    Groves, D.: Limit groups for relatively hyperbolic groups, II: Makanin–Razborov diagrams. Geom. Topol. 9, 2319–2358 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hain, R. Looijenga E.: Mapping class groups and moduli spaces of curves. In: Algebraic Geometry-Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, 62, Part 2, , pp. 97–142 .American Mathematical Society, Providence (1997)Google Scholar
  14. 14.
    Houdayer, C., Popa, S., Vaes, S.: A class of groups for which every action is \(\text{ W }^*\)-superrigid. Groups Geom. Dyn. 7, 577–590 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ioana, A.: Cocycle superrigidity for profinite actions of property (T) groups. Duke Math. J. 157, 337–367 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ioana, A.: \(\text{ W }^*\)-Superrigidity for Bernoulli actions of property (T) groups. J. Am. Math. Soc. 24, 1175–1226 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ioana, A.: Uniqueness of the group measure space decomposition for Popa’s \(\cal {HT}\) factors. Geom. Funct. Anal. 22, 699–732 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Ioana, A.: Cartan subalgebras of amalgamated free product \(\text{ II }_1\) factors. To appear in Ann. Sci. École Norm. Sup. (preprint). arXiv:1207.0054 (2014)
  19. 19.
    Ioana, A.: Classiffication and rigidity for von Neumann algebras. In: To Appear in Proceedings of the 6th ECM (Krakow, 2012), European Mathematical Society Publishing House (preprint). arXiv:1212.0453 (2012)
  20. 20.
    Ioana, A., Popa, S., Vaes, S.: A class of superrigid group von Neumann algebras. Ann. Math. 178, 231–286 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Ivanov, N.V.: Mapping Class Groups, Handbook of Geometric Topology, pp. 523–633. North-Holland, Amsterdam (2002)Google Scholar
  22. 22.
    Ivanov, N.V.: Fifteen problems about the mapping class groups. In: Problems on Mapping Class Groups and Related Topics, Proceedings of Symposia in Pure Mathematics, 74, pp. 71–80. American Mathematical Society, Providence (2006)Google Scholar
  23. 23.
    Jones, V., Popa, S.: Some properties of MASAs in factors. In: Invariant Subspaces and Other Topics (Timişoara/Herculane, 1981), Operator Theory: Advances and Applications, 6, pp. 89–102. Birkhäuser (1982)Google Scholar
  24. 24.
    Kharlampovich, O., Myasnikov, A.: Description of fully residually free groups and irreducible affine varieties over a free group. In: Summer School in Group Theory in Banff, 1996, CRM Proceedings of Lecture Notes, 17, pp. 71–80. American Mathematical Society, Providence (1999)Google Scholar
  25. 25.
    Kida, Y.: Orbit equivalence rigidity for ergodic actions of the mapping class group. Geom. Dedicata 131, 99–109 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kida, Y.: Rigidity of amalgamated free products in measure equivalence. J. Topol. 4, 687–735 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    McCarthy, J.D.: On the first cohomology group of cofinite subgroups in surface mapping class groups. Topology 40, 401–418 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)CrossRefGoogle Scholar
  29. 29.
    Osin, D.V.: Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems. Memoirs Am. Math. Soc. 179(843) vi+100 (2006)Google Scholar
  30. 30.
    Osin, D.V.: Peripheral fillings of relatively hyperbolic groups. Invent. Math. 167(2), 295–326 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Osin, D.V.: Elementary subgroups of relatively hyperbolic groups and bounded generation. Int J. Algebra Comput. 16(1), 99–118 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ozawa, N., Popa, S.: On a class of \(\text{ II }_1\) factors with at most one Cartan subalgebra. Ann. Math. 172, 713–749 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Peterson, J.: Examples of group actions which are virtually \(\text{ W }^*\)-superrigid (preprint). arXiv:1002.1745
  34. 34.
    Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. École Norm. Sup. 19, 57–106 (1986)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Popa, S.: On a class of type \(\text{ II }_1\) factors with Betti numbers invariants. Ann. Math. 163, 809–899 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Popa, S.: Strong rigidity of \(\text{ II }_1\) factors arising from malleable actions of \(w\)-rigid groups I. Invent. Math. 165, 369–408 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. In: Proceedings of the ICM (Madrid, 2006), vol. I, , pp. 445–477. European Mathematical Society Publishing House (2007)Google Scholar
  38. 38.
    Popa, S., Vaes, S.: Group measure space decomposition of \(\text{ II }_1\) factors and \(\text{ W }^*\)-superrigidity. Invent. Math. 182(2), 371–417 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Popa, S., Vaes, S.: Unique Cartan decomposition for \(\text{ II }_1\) factors arising from arbitrary actions of free groups. Acta Math. 212, 141–198 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Popa, S., Vaes, S.: Unique Cartan decomposition for \(\text{ II }_1\) factors arising from arbitrary actions of hyperbolic groups. J. Reine Angew. Math.Google Scholar
  41. 41.
    Powell, J.: Two theorems on the mapping class group of a surface. Proc. Am. Math. Soc. 68, 347–350 (1978)CrossRefzbMATHGoogle Scholar
  42. 42.
    Putman, A.: A note on the abelianizations of finite-index subgroups of the mapping class group. Proc. Am. Math. Soc. 138, 753–758 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Sela, Z.: Diophantine geometry over groups I: Makanin–Razborov diagrams. IHES Publ. Math. 93, 31–105 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Vaes, S.: Explicit computations of all finite index bimodules for a family of \(\text{ II }_1\) factors. Ann. Sci. École Norm. Sup. 41, 743–788 (2008)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Vaes, S.: Rigidity for von Neumann algebras and their invariants. In: Proceedings of the ICM (Hyderabad, India, 2010), vol. III, pp.1624–1650. Hindustan Book Agency (2010)Google Scholar
  46. 46.
    Vaes, S.: One-cohomology and the uniqueness of the group measure space decomposition of a \(\text{ II }_1\) factor. Math. Ann. 355, 661–696 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Vaes, S.: Normalizers inside amalgamated free product von Neumann algebras (preprint). arXiv:1305.3225 (2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA
  2. 2.Department of MathematicsUniversity of California San DiegoLa JollaUSA
  3. 3.Department of MathematicsKyoto UniversityKyoto Japan

Personalised recommendations