Skip to main content
Log in

Euler’s equations and the maximum principle

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we use maximum principle in the far field region for the time dependent self-similar Euler equations to exclude discretely self-similar blow-up for the Euler equations of the incompressible fluid flows. Our decay conditions near spatial infinity of the blow-up profile are given explicitly in terms the coefficient in the equations. We also deduce triviality of the discretely self-similar solution to the magnetohydrodynamic system, under suitable decay conditions near spatial infinity than the previous one. Applying similar argument directly to the Euler equations, we obtain a priori estimate of the vorticity in the far field region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Titi, E.S.: Euler equations for an ideal incompressible fluid. Russian Math. Surv. 62(3), 409–451 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chae, D.: Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326(1), 37–48 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chae, D.: Nonexistence of self-similar singularities in the ideal magnetohydrodynamics. Arch. Ration. Mech. Anal. 194(3), 10111027 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. 273(1), 203–215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chae, D., Shvydkoy, R.: On formation of a locally self-similar collapse in the incompressible Euler equations. Arch. Ration. Mech. Anal. 209(3), 999–1017 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chae, D., Tsai, T-P.: On discretely self-similar solutions of the Euler equations. Math. Res. Lett. (to appear)

  8. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Commun. P.D.E. 21(3–4), 559–571 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Eggers, J., Fontelos, M.A.: The role of self-similarity in singularities of partial differential equations. Nonlinearity 22(1), R1–R44 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga, M.-H., Giga, Y., Saal, J.: Nonlinear partial differential equations. In: Asymptotic Behavior of Solutions and Self-Similar solutions. Birkhäuser, Germany (2010)

  12. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38, 297–319 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giga, Y., Kohn, R.V.: Characterizing blow up using similarity variables. Indiana Univ. Math. J. 36, 1–40 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kato, T.: Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^3\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  15. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Nečas, J., Ružička, M., Šverák, V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2), 283–294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miller, J.R., O’Leary, M., Schonbeck, M.: Nonexistence of singular pseudo-self-similar solutions of the Navier–Stokes system. Math. Ann. 319(4), 809–815 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tsai, T.-P.: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143, 29–51 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank to the anonymous referee for careful reading and constructive criticism. This research is supported partially by NRF Grants no. 2006-0093854 and no. 2009-0083521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, D. Euler’s equations and the maximum principle. Math. Ann. 361, 51–66 (2015). https://doi.org/10.1007/s00208-014-1063-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1063-1

Mathematics Subject Classification

Navigation