Skip to main content
Log in

Traces and embeddings of anisotropic function spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we characterize the trace spaces of a class of weighted function spaces of intersection type with mixed regularities. To a large extent we can overcome the difficulty of mixed scales by employing a microscopic improvement in Sobolev and mixed derivative embeddings with fixed integrability. We apply the general results to prove maximal \(L^p\)-\(L^q\)-regularity for the linearized, fully inhomogeneous two-phase Stefan problem with Gibbs–Thomson correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems. Abstract Linear Theory, vol. 1. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  3. Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amann, H.: Nonlocal quasilinear parabolic equations. Uspekhi Mat. Nauk. 60(6(366)), 21–32 (2005)

    Article  MathSciNet  Google Scholar 

  5. Amann, H.: Anisotropic function spaces and maximal regularity for parabolic problems. Part 1: Function spaces. In: Jindrich Necas Center for Mathematical Modeling Lecture Notes, vol. 6, Prague (2009)

  6. Berkolajko, M.Z.: On traces of generalized spaces of differentiable functions with mixed norm. Sov. Math. Dokl. 30, 60–64 (1984)

    MATH  Google Scholar 

  7. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In: Handbook of Mathematical Fluid Dynamics, Vol. III, pp. 161–244. North-Holland, Amsterdam (2004)

  8. Clément, Ph., Li, S.: Abstract parabolic quasilinear equations and application to a groundwater flow problem. Adv. Math. Sci. Appl. 3(special issue), 17–32 (1993/94)

  9. Denk, R., Hieber, M., Prüss, J.: \(R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788) (2003)

  10. Denk, R., Hieber, M., Prüss, J.: Optimal \(L^{p}\)-\(L^{q}\)-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257(1), 193–224 (2007)

  11. Denk, R., Kaip, M.: Operator Theory: Advances and Applications. General parabolic mixed order systems in \(L_p\) and applications, vol. 239. Birkhäuser, Basel (2013)

    Google Scholar 

  12. Denk, R., Prüss, J., Zacher, R.: Maximal \(L_p\)-regularity of parabolic problems with boundary dynamics of relaxation type. J. Funct. Anal. 255(11), 3149–3187 (2008)

  13. Denk, R., Saal, J., Seiler, J.: Inhomogeneous symbols, the Newton polygon, and maximal \(L^p\)-regularity. Russ. J. Math. Phys. 15(2), 171–191 (2008)

  14. Di Blasio, G.: Linear parabolic evolution equations in \(L^p\)-spaces. Ann. Math. Pura Appl. IV. Ser. 138, 55–104 (1984)

  15. Escher, J., Prüss, J., Simonett, G.: Analytic solutions for a Stefan problem with Gibbs–Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

  17. Grafakos, L.: Graduate Texts in Mathematics. Modern Fourier analysis, vol. 250, 2nd edn. Springer, New York (2009)

    Google Scholar 

  18. Haase, M.H.A.: Operator Theory: Advances and Applications. The functional calculus for sectorial operators, vol. 169. Birkhäuser Verlag, Basel (2006)

    Google Scholar 

  19. Han, Y.-S., Meyer, Y.: A characterization of Hilbert spaces and the vector-valued Littlewood–Paley theorem. Methods Appl. Anal. 3(2), 228–234 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. University Press, Cambridge (1952)

    MATH  Google Scholar 

  21. Johnsen, J., Sickel, W.: On the trace problem for lizorkin-triebel spaces with mixed norms. Math. Nachr. 281(5), 669–696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaip, M.: General parabolic mixed order systems in \(L_p\) and applications. PhD thesis, University of Constance, Konstanz (2012)

  23. Köhne, M., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces. J. Evol. Equ. 10(2), 443–463 (2010)

  24. Kunstmann, P.C., Weis, L.W.: Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus. Functional analytic methods for evolution equations. In: Lecture Notes in Mathematics, Vol. 1855, pp. 65–311. Springer, Berlin (2004)

  25. Lunardi, A.: Interpolation Theory, 2nd edn. Scuola Normale Superiore di Pisa, Pisa (2009)

    MATH  Google Scholar 

  26. McConnell, T.R.: On Fourier multiplier transformations of Banach-valued functions. Trans. Am. Math. Soc. 285(2), 739–757 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meyries, M., Schnaubelt, R.: Interpolation, embeddings and traces for anisotropic fractional Sobolev spaces with temporal weights. J. Funct. Anal. 262, 1200–1229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyries, M., Schnaubelt, R.: Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions. Math. Nachr. 285, 1032–1051 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meyries, M., Veraar, M.C.: Sharp embedding results for spaces of smooth functions with power weights. Stud. Math. 208(3), 257–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic maximal \(L^{p}\)-regularity. Ann. Probab. 40(2), 788–812 (2012)

  31. Prüss, J.: Maximal regularity for evolution equations in \(L_p\)-spaces. Conf. Semin. Mat. Univ. Bari 2002(285), 1–39 (2003)

  32. Prüss, J., Shimizu, S., Shibata, Y., Simonett, G.: On well-posedness of incompressible two-phase flows with phase transitions: the case of equal densities. Evol. Equ. Control Theory 1(1), 171–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted \(L_p\)-spaces. Arch. Math. 82(5), 415–431 (2004)

  34. Schmeisser, H.-J., Sickel, W.: Traces, Gagliardo–Nirenberg inequalities and Sobolev type embeddings for vector-valued function spaces. Jenaer Schriften zur Mathematik und Informatik (2001)

  35. Seeley, R.: Interpolation in \(L^{p}\) with boundary conditions. Stud. Math. 44, 47–60 (1972)

  36. Shimizu, S.: Local solvability of free boundary problems for the two-phase Navier–Stokes equations with surface tension in the whole space. Progr. Nonlinear Differ. Equ. Appl. 80, 647–686 (2011)

    Google Scholar 

  37. Sobolevskii, P.E.: Fractional powers of coercively positive sums of operators. Sov. Math. Dokl. 16, 1638–1641 (1975)

    MATH  Google Scholar 

  38. Stein, E.M.: Princeton Mathematical Series, Monographs in Harmonic Analysis, III. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, vol. 43. Princeton University Press, Princeton (1993)

    Google Scholar 

  39. Triebel, H.: Monographs in Mathematics. Theory of function spaces, vol. 78. Birkhäuser Verlag, Basel (1983)

    Google Scholar 

  40. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  41. Triebel, H.: Monographs in Mathematics. Theory of function spaces. III, vol. 100. Birkhäuser Verlag, Basel (2006)

    Google Scholar 

  42. Turesson, B.O.: Lecture Notes in Mathematics. Nonlinear potential theory and weighted Sobolev spaces, vol. 1736. Springer-Verlag, Berlin (2000)

    Google Scholar 

  43. Weidemaier, P.: Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed \(L_p\)-norm. Electron. Res. Announc. Am. Math. Soc. 8, 47–51 (2002)

  44. Weidemaier, P.: Lizorkin–Triebel spaces of vector-valued functions and Sharp trace theory for functions in Sobolev spaces with a mixed \(L_p\)-norm in parabolic problems. Mat. Sb. 196(6), 3–16 (2005)

  45. Weis, L.W.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)

  46. Zacher, R.: Quasilinear parabolic problems with nonlinear boundary conditions. PhD thesis. Martin-Luther Universität Halle-Wittenberg, Halle (2003)

  47. Zacher, R.: Maximal regularity of type \(L_p\) for abstract parabolic Volterra equations. J. Evol. Equ. 5(1), 79–103 (2005)

  48. Zimmermann, F.: On vector-valued Fourier multiplier theorems. Stud. Math. 93(3), 201–222 (1989)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for helpful suggestions which lead to improvements of the results and the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meyries.

Additional information

M. Meyries was supported by Deutsche Forschungsgemeinschaft (DFG), project ME 3848/1-1. M. C. Veraar was supported by a VENI subsidy 639.031.930 of the Netherlands Organisation for Scientific Research (NWO)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyries, M., Veraar, M.C. Traces and embeddings of anisotropic function spaces. Math. Ann. 360, 571–606 (2014). https://doi.org/10.1007/s00208-014-1042-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1042-6

Mathematics Subject Classification (2000)

Navigation