Skip to main content
Log in

\(L^2\)-properties of the \(\overline{\partial }\) and the \(\overline{\partial }\)-Neumann operator on spaces with isolated singularities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(X\) be a Hermitian complex space of pure dimension with only isolated singularities and \(\pi : M\rightarrow X\) a resolution of singularities. Let \(\Omega \subset \subset X\) be a domain with no singularities in the boundary, \(\Omega ^*=\Omega {\setminus }\!{{\mathrm{Sing}}}X\) and \(\Omega '=\pi ^{-1}(\Omega )\). We relate \(L^2\)-properties of the \(\overline{\partial }\) and the \(\overline{\partial }\)-Neumann operator on \(\Omega ^*\) to properties of the corresponding operators on \(\Omega '\) (where the situation is classically well understood). Outside some middle degrees, there are compact solution operators for the \(\overline{\partial }\)-equation on \(\Omega ^*\) exactly if there are such operators on the resolution \(\Omega '\), and the \(\overline{\partial }\)-Neumann operator is compact on \(\Omega ^*\) exactly if it is compact on \(\Omega '\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A Hermitian complex space \((X,g)\) is a reduced complex space \(X\) with a metric \(g\) on the regular part such that the following holds: if \(x\in X\) is an arbitrary point there exists a neighborhood \(U=U(x)\) and a biholomorphic embedding of \(U\) into a domain \(G\) in \(\mathbb {C}^N\) and an ordinary smooth Hermitian metric in \(G\) whose restriction to \(U\) is \(g|_U\).

  2. When we talk about a resolution of singularities \(\pi : M\rightarrow X\), we require that the exceptional set \(E=\pi ^{-1}({{\mathrm{Sing}}}X)\) is a (reduced) divisor in \(M\).

  3. By a little abuse of notation, we write \(N=\Box ^{-1}\) for \(\overline{\partial }\)-Neumann operators though \(N\) is an inverse to the \(\overline{\partial }\)-Laplacian \(\Box =\overline{\partial }\overline{\partial }^*+\overline{\partial }^*\overline{\partial }\) only on the range \(\text{ Im } \Box \).

  4. As \(U'\) is str. pseudoconvex, we can also use Serre duality: \(H^n(U',\mathcal {O})\cong H^0_{cpt}(U',\Omega ^n)=0\).

References

  1. Alt, H.W.: Lineare Funktionalanalysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  2. Andersson, M., Samuelsson, H.: A Dolbeault–Grothendieck lemma on complex spaces via Koppelman formulas. Invent. Math. 190, 261–297 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersson, M., Samuelsson, H.: Weighted Koppelman formulas and the \(\overline{\partial }\)-equation on an analytic space. J. Funct. Anal. 261(3), 777–802 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace–Beltrami equation on complex manifolds. Publ. Math. Inst. Hautes Etudes Sci. 25, 81–130 (1965)

    Article  MathSciNet  Google Scholar 

  5. Aroca, J.M., Hironaka, H., Vicente, J.L.: Desingularization theorems. Mem. Math. Inst. Jorge Juan 30, (1977) (Madrid)

  6. Bierstone, E., Milman, P.: Canonical desingularization in characteristic zero by blowing-up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diederich, K., FornÆss, J.E., Vassiliadou, S.: Local \(L^2\) results for \(\overline{\partial }\) on a singular surface. Math. Scand. 92, 269–294 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Folland, G.B., Kohn, J.J.: The Neumann Problem for the Cauchy–Riemann Complex (Ann. Math. Stud.), vol. 75. Princeton University Press, Princeton (1972)

    Google Scholar 

  9. FornÆss, J.E.: \(L^2\) results for \(\overline{\partial }\) in a conic. In: International Symposium, Complex Analysis and Related Topics, Cuernavaca, Operator Theory: Advances and Applications. Birkhauser, Boston (1999)

  10. FornÆss, J.E., Øvrelid, N., Vassiliadou, S.: Semiglobal results for \(\overline{\partial }\) on a complex space with arbitrary singularities. Proc. Am. Math. Soc. 133(8), 2377–2386 (2005)

    Article  MATH  Google Scholar 

  11. FornÆss, J.E., Øvrelid, N., Vassiliadou, S.: Local \(L^2\) results for \(\overline{\partial }\): the isolated singularities case. Int. J. Math. 16(4), 387–418 (2005)

    Article  MATH  Google Scholar 

  12. Hauser, H.: The Hironaka theorem on resolution of singularities. Bull. (New Ser.) Am. Math. Soc. 40, 323–403 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hefer, T., Lieb, I.: On the compactness of the \(\overline{\partial }\)-Neumann operator. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 415–432 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Henkin, G.M., Leiterer, J.: Theory of Functions on Complex Manifolds. Birkhäuser, Basel (1984)

    MATH  Google Scholar 

  15. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II. Ann. Math. 79(2), 109–326 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hörmander, L.: \(L^2\)-estimates and existence theorems for the \(\overline{\partial }\)-operator. Acta Math. 113, 89–152 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. Van Nostrand, Princeton (1966)

    MATH  Google Scholar 

  18. Hörmander, L.: The null space of the \(\overline{\partial }\)-Neumann operator. Ann. Inst. Fourier (Grenoble) 54, 1305–1369 (2004)

    Article  MathSciNet  Google Scholar 

  19. Kohn, J.J.: Harmonic integrals on strongly pseudoconvex manifolds I. Ann. Math. 78, 112–148 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kohn, J.J.: Harmonic integrals on strongly pseudoconvex manifolds II. Ann. Math. 79, 450–472 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kohn, J.J., Nirenberg, L.: Non-coercive boundary value problems. Commun. Pure Appl. Math. 18, 443–492 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lieb, I., Michel, J.: The Cauchy–Riemann Complex, Integral Formulae and Neumann Problem. Vieweg, Braunschweig/Wiesbaden (2002)

    MATH  Google Scholar 

  23. Malgrange, B.: Faisceaux sur des variétés analytiques-réelles. Bull. Soc. Math. Fr. 85, 231–237 (1957)

    MATH  MathSciNet  Google Scholar 

  24. Ohsawa, T., Takegoshi, K.: On the extension of \(L^2\)-holomorphic functions. Math. Z. 195(2), 197–204 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Øvrelid, N., Vassiliadou, S.: Solving \(\overline{\partial }\) on product singularities. Complex Var. Ellipitic Equ. 51(3), 225–237 (2006)

    Article  Google Scholar 

  26. Øvrelid, N., Vassiliadou, S.: Some \(L^2\) results for \(\overline{\partial }\) on projective varieties with general singularities. Am. J. Math. 131, 129–151 (2009)

    Article  Google Scholar 

  27. Øvrelid, N., Vassiliadou, S.: \(L^{2}\text{- }\overline{\partial }\)-cohomology groups of some singular complex spaces. Invent. Math. 192(2), 413–458 (2013)

    Article  MathSciNet  Google Scholar 

  28. Pardon, W.: The \(L^{2}\text{- }\overline{\partial }\)-cohomology of an algebraic surface. Topology 28(2), 171–195 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pardon, W., Stern, M.: \(L^{2}\text{- }\overline{\partial }\)-cohomology of complex projective varieties. J. Am. Math. Soc. 4(3), 603–621 (1991)

    MATH  MathSciNet  Google Scholar 

  30. Pardon, W., Stern, M.: Pure Hodge structure on the \(L^2\)-cohomology of varieties with isolated singularities. J. reine angew. Math. 533, 55–80 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Rudin, W.: Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

    Google Scholar 

  32. Ruppenthal, J.: About the \(\overline{\partial }\)-equation at isolated singularities with regular exceptional set. Int. J. Math. 20(4), 459–489 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ruppenthal, J.: The \(\overline{\partial }\)-equation on homogeneous varieties with an isolated singularity. Math. Z. 263, 447–472 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ruppenthal, J.: \(L^2\)-theory for the \(\overline{\partial }\)-operator on compact complex spaces. arXiv:1004.0396, ESI-Preprint 2202 (submitted)

  35. Ruppenthal, J.: Compactness of the \(\overline{\partial }\)-Neumann operator on singular complex spaces. J. Funct. Anal. 260(11), 3363–3403 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ruppenthal, J.: \(L^2\)-theory for the \(\overline{\partial }\)-operator on complex spaces with isolated singularities. Preprint 2011, arXiv:1110:2373 (submitted)

  37. Ruppenthal, J., Zeron, E.S.: An explicit \(\overline{\partial }\)-integration formula for weighted homogeneous varieties. Mich. Math. J. 58, 321–337 (2009)

    Article  MathSciNet  Google Scholar 

  38. Ruppenthal, J., Zeron, E.S.: An explicit \(\overline{\partial }\)-integration formula for weighted homogeneous varieties II, forms of higher degree. Mich. Math. J. 59, 283–295 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shaw, M.-C.: Global solvability and regularity for \(\overline{\partial }\) on an annulus between two weakly pseudoconvex domains. Trans. Am. Math. Soc. 291, 255–267 (1985)

    MATH  Google Scholar 

  40. Siu, Y.-T.: Analytic sheaf cohomology groups of dimension \(n\) of \(n\)-dimensional non-compact complex manifolds. Pac. J. Math. 28, 407–411 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  41. Siu, Y.-T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. Siu, Y.-T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Straube, E.: Lectures on the \(L^2\)- Sobolev theory of the \(\overline{\partial }\)- Neumann problem. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2010)

Download references

Acknowledgments

J. Ruppenthal was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant RU 1474/2 within DFG’s Emmy Noether Programme. The authors thank the unknown referee for several suggestions which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ruppenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Øvrelid, N., Ruppenthal, J. \(L^2\)-properties of the \(\overline{\partial }\) and the \(\overline{\partial }\)-Neumann operator on spaces with isolated singularities. Math. Ann. 359, 803–838 (2014). https://doi.org/10.1007/s00208-014-1016-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1016-8

Mathematics Subject Classification (2000)

Navigation