Skip to main content
Log in

Growth in solvable subgroups of \({{\mathrm{GL}}}_r({\mathbb {Z}}/p{\mathbb {Z}})\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(K={\mathbb {Z}}/p{\mathbb {Z}}\) and let \(A\) be a subset of \({{\mathrm{GL}}}_r(K)\) such that \(\langle A \rangle \) is solvable. We reduce the study of the growth of \(A\) under the group operation to the nilpotent setting. Fix a positive number \(C\ge 1\); we prove that either \(A\) grows (meaning \(|A_3|\ge C|A|\)), or else there are groups \(U_R\) and \(S\), with \(U_R\unlhd S \unlhd \langle A\rangle \), such that \(S/U_R\) is nilpotent, \(A_k\cap S\) is large and \(U_R\subseteq A_k\), where \(k\) depends only on the rank \(r\) of \({{\mathrm{GL}}}_r(K)\). Here \(A_k = \{x_1 x_2 \cdots x_k : x_i \in A \cup A^{-1} \cup \{1\}\}\). When combined with recent work by Pyber and Szabó, the main result of this paper implies that it is possible to draw the same conclusions without supposing that \(\langle A \rangle \) is solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We thank an anonymous referee for pointing out that our results can be extended in this way, and for sketching the proof.

  2. We caution the reader that there are a number of slightly differing definitions of nilprogressions, and coset nilprogressions, in the literature. In particular the definitions used by Tao in his work on solvable groups (which were the first such definitions to appear in the literature) are slightly different from the definitions we require for Theorem 1.3. For that theorem we use the definitions of [8]; see Sect. 9 for full details.

  3. Our thanks to Simon Goodwin for pointing this out.

References

  1. Bourgain, J., Gamburd, A.: On the spectral gap for finitely-generated subgroups of \(\text{ SU }(2)\). Invent. Math. 171(1), 83–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of \({\rm SL}_2(\mathbb{F}_p)\). Ann. Math. (2) 167(2), 625–642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14(1), 27–57 (2004). N.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Konyagin, S.V.: Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order. C. R. Math. Acad. Sci. Paris 337(2), 75–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breuillard, E., Green, B.: Approximate groups, I: the torsion-free nilpotent case. J. Inst. Math. Jussieu 10(1), 37–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breuillard, E., Green, B.: Approximate groups, II: the solvable linear case. Q. J. Math. 62(3), 513–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4), 774–819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci. 116(1), 115–221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borel, A.: Linear Algebraic Groups, 2nd edn. Graduate Texts in Mathematics, vol. 126. Springer, New York (1991)

  10. Borel, A., Springer, T.A.: Rationality properties of linear algebraic groups. II. Tôhoku Math. J. (2) 20, 443–497 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borel, A., Tits, J.: Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I. Invent. Math. 12, 95–104 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carter, R.W.: Finite Groups of Lie Type. Conjugacy Classes and Complex Characters. Wiley Classics Library, John Wiley and Sons Ltd, Chichester (1993). Reprint of the 1985 original

  13. Chang, M.-C.: Product theorems in \({\rm SL}_2\) and \({\rm SL}_3\). J. Inst. Math. Jussieu 7(1), 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Danilov, V.I.: Algebraic Varieties and Schemes. Algebraic Geometry, I, Encyclopaedia of Mathematical Science, vol. 23, pp 167–297. Springer, Berlin (1994)

  15. Dinai, O.: Growth in \({SL}_2\) over finite fields. J. Group Theory 14(2), 273–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, D., Katz, N., Peng, I.: Approximate multiplicative groups in nilpotent Lie groups. Proc. Am. Math. Soc. 138, 1575–1580 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gill, N., Helfgott, H.A.: Growth of small generating subsets in \({SL}_n({\mathbb{Z}}/p {\mathbb{Z}})\). Int. Math. Res. Not. 18, 4226–4251 (2011)

  18. Glibichuk, A.A., Konyagin, S.V.: Additive Properties of Product Sets in Fields of Prime Order. Additive Combinatorics, CRM Proceedings and Lecture Notes, vol. 43, pp. 279–286. American Mathematical Society, Providence (2007)

  19. Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. Number 3. Part I. Chapter A. Almost Simple K-Groups. Mathematical Surveys and Monographs, vol. 40.3. American Mathematical Society, Providence (1998)

  20. Green, B.: Finite Field Models in Additive Combinatorics. Surveys in Combinatorics 2005, London Mathematical Sociey Lecture Note Series, vol. 327, pp. 1–27. Cambridge University Press, Cambridge (2005)

  21. Helfgott, H.A.: Growth and generation in \({\rm SL}_{2}({\mathbb{Z}}/p {\mathbb{Z}})\). Ann. Math. (2) 167(2), 601–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helfgott, H.A.: Growth and generation in \({SL}_3({\mathbb{Z}}/p {\mathbb{Z}})\). J. Eur. Math. Soc. 13(3), 761–851 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hrushovski, E.: Stable group theory and approximate subgroups. J. Am. Math. Soc. 25(1), 189–243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)

  25. Kirillov, Jr., A.: An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics, vol. 113. Cambridge University Press, Cambridge (2008)

  26. Lennox, J.C., Robinson, D.J.S.: The Theory of Infinite Soluble Groups. Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, Oxford (2004)

  27. Malcev, A.I.: On some classes of infinite soluble groups. Mat. Sbornik N.S. 28(70), 567–588 (1951)

    MathSciNet  Google Scholar 

  28. McNinch, G.J.: Abelian unipotent subgroups of reductive groups. J. Pure Appl. Algebra 167(2–3), 269–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olson, J.E.: On the sum of two sets in a group. J. Number Theory 18(1), 110–120 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pyber, L., Szabó, E.: Growth in finite simple groups of lie type of bounded rank. (2010). Preprint available on the Math arXiv: http://arxiv.org/abs/1005.1858

  31. Robinson, D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics, vol. 80. Springer, New York (1982)

  32. Ruzsa, I.Z., Turjányi, S.: A note on additive bases of integers. Publ. Math. Debrecen 32(1–2), 101–104 (1985)

    MathSciNet  MATH  Google Scholar 

  33. Sanders, T.: Approximate groups and doubling metrics. Math. Proc. Camb. Philos. Soc. 152(3), 385–404 (2012)

    Article  MATH  Google Scholar 

  34. Seress, A.: Permutation Group Algorithms. Cambridge Tracts in Mathematics, vol. 152. Cambridge University Press, Cambridge (2003)

  35. Springer, T.A.: Linear Algebraic Groups, 2nd edn. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2009)

  36. Tao, T.: See blog post and subsequent discussion at http://terrytao.wordpress.com/2009/06/21/freimans-theorem-for-solvable-groups/

  37. Tao, T.: Product set estimates for non-commutative groups. Combinatorica 28(5), 547–594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tao, T.: Freiman’s theorem for solvable groups. Contrib. Discrete Math. 5(2), 137–184 (2010)

    MathSciNet  Google Scholar 

  39. Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)

  40. Tointon, M.: Freiman’s theorem in an arbitrary nilpotent group (2010). Preprint available on the Math arXiv: http://arxiv.org/abs/1211.3989

  41. Varju, P.: Expansion in \(\text{ SL }_{d}({\cal O}_K/I),\, I\) square-free. J. Eur. Math. Soc. 14(1), 273–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Pablo Spiga provided help with group theory results; Martin Kassabov provided significant assistance in understanding solvable algebraic groups. Thanks are also due in this regard to Emmanuel Breuillard, Kevin Buzzard, Simon Goodwin, Alex Gorodnik, Scott Murray, László Pyber and an anonymous referee. In addition Simon Goodwin pointed out an error in the statement of Lemma 3.1 in an earlier version. Part of this work was completed while the first author was visiting the University of Western Australia and the University of Bristol; he would like to thank members of both maths departments for providing excellent working conditions, and for their interest in the work at hand. The second author would like to thank the Ecole Polytechnique Fédérale de Lausanne for hosting him during part of his work on this project. Sect. 8 of this paper is joint work with László Pyber and Endre Szabó; it is a pleasure to thank them for the warm way in which they have shared their considerable insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Gill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, N., Helfgott, H.A. Growth in solvable subgroups of \({{\mathrm{GL}}}_r({\mathbb {Z}}/p{\mathbb {Z}})\) . Math. Ann. 360, 157–208 (2014). https://doi.org/10.1007/s00208-014-1008-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1008-8

Mathematics Subject Classification (2010)

Navigation