Skip to main content
Log in

Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study curvature functionals for immersed 2-spheres in a compact, three-dimensional Riemannian manifold \(M\). Under the assumption that the sectional curvature \(K^M\) is strictly positive, we prove the existence of a smooth immersion \(f:{\mathbb {S}}^2 \rightarrow M\) minimizing the \(L^2\) integral of the second fundamental form. Assuming instead that \(K^M \le 2\) and that there is some point \(\overline{x} \in M\) with scalar curvature \(R^M(\overline{x}) > 6\), we obtain a smooth minimizer \(f:{\mathbb {S}}^2 \rightarrow M\) for the functional \(\int \frac{1}{4}|H|^2+1\), where \(H\) is the mean curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Breuning, P.: Immersions with local Lipschitz representation, Ph. D. Thesis, Freiburg (2011)

  2. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  4. Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimizing curvature. Indiana Math. J. 35(1), 45–71 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuwert, E., Schätzle, R.: Closed surfaces with bounds on their Willmore energy. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 11(5), 605–634 (2012)

    Google Scholar 

  6. Lamm, T., Metzger, J.: Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Notices IMRN 19, 3786–3813 (2010)

    MathSciNet  Google Scholar 

  7. Lamm, T., Metzger, J., Schulze, F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350, 1–78 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Langer, J.: A compactness theorem for surfaces with \(L^p\)-bounded second fundamental form. Math. Ann. 270, 223–234 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mondino, A.: Some results about the existence of critical points for the Willmore functional. Math. Zeit. 266(3), 583–622 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mondino, A.: The conformal Willmore functional: a perturbative approach. J. Geom. Anal., 1–48 (2011, online first)

  11. Mondino, A.: Existence of integral \(m\)-varifolds minimizing \(\int |A|^p\) and \(\int |H|^p, p > m\), in Riemannian manifolds [arXiv:1010.4514] (2010, submitted)

  12. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, New York (1966)

    MATH  Google Scholar 

  13. Rivière, T.: Variational principles for immersed surfaces with \(L^2\)-bounded second fundamental form [arXiv:1007.2997] (2010)

  14. Schygulla, J.: Willmore minimizers with prescribed isoperimetric ratio. Archiv. Ration. Mech. Anal. 203, 901–941 (2011)

    Google Scholar 

  15. Simon, L.: Existence of Willmore surfaces, Miniconf. on Geom. and P.D.E. (Canberra, 1985). In: Proc. Centre Math. Anal., vol. 10, Australian Nat. Univ. Canberra, pp. 187–216 (1986)

  16. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–325 (1993)

    MATH  Google Scholar 

  17. Simon, L.: Lectures on geometric measure theory. In: Proc. Centre for Math. Analysis Australian National University, vol. 3, Canberra (1983)

  18. Souam, R., Toubiana, E.: Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv. 84, 673–704 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Willmore, T.J.: Riemannian Geometry. Oxford Science Publications, Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

A. Mondino would like to thank his supervisor Prof. A. Malchiodi for proposing to study the Willmore functional in Riemannian manifolds, and for his constant support. All authors acknowledge the support by the DFG Collaborative Research Center SFB/Transregio 71 and of M.U.R.S.T, within the project B-IDEAS “Analysis and Beyond”, making possible our cooperation with mutual visits at Freiburg and Trieste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mondino.

Appendix

Appendix

1.1 Some useful lemmas

In this subsection we state some useful results we need for proving regularity. Lemma 4 is an extension result adapted to the cut-and-paste procedure we use and is proved in [14].

Lemma 5.1

Let \(L\) be a 2-dimensional plane in \({\mathbb {R}^n}, x_0\in L\) and \(u\in {{\mathrm{C}}}^\infty (U,L^\perp )\), where \(U\subset L\) is an open neighborhood of \(L\cap \partial B_\rho (x_0)\). Moreover let \(|{{\mathrm{D}}}u|\le c\) in \(U\). Then there exists a function \(w\in {{\mathrm{C}}}^\infty (\overline{B_\rho (x_0)},L^\perp )\) with the following properties:

$$\begin{aligned}&(1)&w=u\quad \text {and}\quad \frac{\partial w}{\partial \nu }=\frac{\partial u}{\partial \nu }\quad \text {on }\partial B_\rho (x_0), \\&(2)&\frac{1}{\rho }||w||_{L^\infty (B_\rho (x_0))}\le c(n)\left( \frac{1}{\rho }||u||_{L^\infty (\partial B_\rho (x_0))}+||{{\mathrm{D}}}u||_{L^\infty (\partial B_\rho (x_0))}\right) , \\&(3)&||{{\mathrm{D}}}w||_{L^\infty (B_\rho (x_0))}\le c(n)||{{\mathrm{D}}}u||_{L^\infty (\partial B_\rho (x_0))}, \\&(4)&\int _{B_\rho (x_0)}|{{\mathrm{D}}}^2w(x)|^2\,{{\mathrm{d}}}x\le c(n)\rho \int _{{{\mathrm{graph}}}u_{|_{\partial B_\rho (x_0)}}}|A(x)|^2\, d\mathcal{H}^1, \end{aligned}$$

where \(d\mathcal{H}^1\) is the 1-dimensional Euclidean Hausdorff measure.

The second lemma is a useful selection principle proved in [16].

Lemma 5.2

Let \(\delta >0, I\subset {\mathbb {R}}\) a bounded interval and \(A_k\subset I, k\in {\mathbb {N}},\) measurable sets with \({{\mathrm{{\mathcal {L}^1}}}}(A_k)\ge \delta \) for all \(k\). Then there exists a set \(A\subset I\) with \({{\mathrm{{\mathcal {L}^1}}}}(A)\ge \delta \), such that each point \(x\in A\) lies in \(A_k\) for infinitely many \(k\).

The third lemma is a decay result we need to get the power decay for the \(L^2\)-norm of the second fundamental form in Lemma 3.6.

Lemma 5.3

Let \(g:(0,b)\rightarrow [0, +\infty )\) be a bounded function such that

$$\begin{aligned} g\left( x\right) \le \gamma g(2x)+Cx^\alpha \quad \text {for all }x\in \left( 0,\frac{b}{2}\right) , \end{aligned}$$

where \(\alpha >0, \gamma \in (0,1)\), and \(C\ge 0\) is a constant. Then there exists a \(\beta \in (0,1)\) and a constant \(C=C(\gamma ,\alpha ,b,||g||_{L^\infty (0,b)})\) such that

$$\begin{aligned} g(x)\le Cx^\beta \quad \text {for all }x\in \left( 0,b\right) . \end{aligned}$$

The last statement is a generalized Poincaré inequality proved in [16].

Lemma 5.4

Let \(\mu >0, \delta \in \left( 0,\frac{\mu }{2}\right) \) and \(\Omega =B^{{\mathbb {R}^2}}_\mu (0)\backslash E\), where \(E\subset {\mathbb {R}^2}\) is measurable with \({{\mathrm{{\mathcal {L}^1}}}}(p_1(E))\le \frac{\mu }{2}\) and \({{\mathrm{{\mathcal {L}^1}}}}(p_2(E))\le \delta \), where \(p_1\) is the projection onto the \(x\)-axis and \(p_2\) is the projection onto the \(y\)-axis. Then for any \(f\in C^1(\Omega )\) there exists a point \((x_0,y_0)\in \Omega \) such that

$$\begin{aligned} \int _\Omega \left| f-f(x_0,y_0)\right| ^2\le C\mu ^2\int _\Omega \left| {{\mathrm{D}}}f\right| ^2+C\delta \mu \sup _\Omega |f|^2 \end{aligned}$$

where \(C\) is an absolute constant.

1.2 Definitions and properties of generalized \((r,\lambda )\)-immersions

Here we recall the definitions and properties of generalized \((r,\lambda )\)-immersions \(f:{\mathbb {S}}^2\hookrightarrow M\subset {\mathbb {R}^p}\) appearing in [1].

We call a mapping \(A:{\mathbb {R}^p}\rightarrow {\mathbb {R}^p}\) an Euclidean isometry, if there is a rotation \(R\in SO(p)\) and a translation \(T\in {\mathbb {R}^p}\), such that \(A(x)=Rx+T\) for all \(x\in {\mathbb {R}^p}\).

For a given point \(q\in {\mathbb {S}}^2\) and a given 2-plane \(E\in G(p,2)\) let \(A_{q,E}:{\mathbb {R}^p}\rightarrow {\mathbb {R}^p}\) be an Euclidean isometry which maps the origin to \(f(q)\) and the subspace \({\mathbb {R}^2}\times \{0\}\subset {\mathbb {R}^p}\) onto \(f(q)+E\).

Let \(U^E_{r,q}\subset {\mathbb {S}}^2\) be the \(q\)-component of the set \((\pi \circ A^{-1}_{q,E}\circ f)^{-1}(B_r)\), where \(\pi :{\mathbb {R}^p}\rightarrow {\mathbb {R}^2}\) is the projection on the first two coordinates.

Definition 5.5

An immersion \(f:{\mathbb {S}}^2\hookrightarrow M\subset {\mathbb {R}^p}\) is called a generalized \((r,\lambda )\)-immersion, if for each point \(q\in {\mathbb {S}}^2\) there is an \(E=E(q)\in G(p,2)\), such that \(A^{-1}_{q,E}\circ f(U^E_{r,q})\) is the graph of a differentiable function \(u:B_r\rightarrow ({\mathbb {R}^2})^\perp \) with \(\Vert {{\mathrm{D}}}u\Vert _{C^0(B_r)}\le \lambda \).

The set of generalized \((r,\lambda )\)-immersions is denoted by \(\mathcal{{F}}^1(r,\lambda )\). Moreover let \(\mathcal{{F}}^1_V(r,\lambda )\) be the set of all immersions \(f\in \mathcal{{F}}^1(r,\lambda )\) such that \(\mu _g({\mathbb {S}}^2)\le V\), where \(\mu _g\) is the induced area measure.

A continuous function \(f:{\mathbb {S}}^2\hookrightarrow M\subset {\mathbb {R}^p}\) is called a \((r,\lambda )\)-function, if for each point \(q\in {\mathbb {S}}^2\) there is an \(E=E(q)\in G(p,2)\), such that \(A^{-1}_{q,E}\circ f(U^E_{r,q})\) is the graph of a Lipschitz function \(u:B_r\rightarrow ({\mathbb {R}^2})^\perp \) with with Lipschitz constant \(\lambda \). The set of \((r,\lambda )\)-functions is denoted by \(\mathcal{{F}}^0(r,\lambda )\).

Now we recall the Compactness Theorem in [1, Theorem 0.5].

Theorem 5.6

Let \(\lambda \le \frac{1}{4}\). Then \(\mathcal{{F}}^1_V(r,\lambda )\) is relatively compact in \(\mathcal{{F}}^0(r,\lambda )\) in the following sense: Let \(f_k:{\mathbb {S}}^2\hookrightarrow M\subset {\mathbb {R}^p}\) be a sequence in \(\mathcal{{F}}^1_V(r,\lambda )\). Then, after passing to a subsequence, there exists a function \(f\in \mathcal{{F}}^0(r,\lambda )\) and a sequence of diffeomorphisms \(\phi _k:{\mathbb {S}}^2\rightarrow {\mathbb {S}}^2\), such that \(f_k\circ \phi _k\) is uniformly Lipschitz bounded and converges uniformly to \(f\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwert, E., Mondino, A. & Schygulla, J. Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds. Math. Ann. 359, 379–425 (2014). https://doi.org/10.1007/s00208-013-1005-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-1005-3

Mathematics Subject Classification

Navigation