Skip to main content
Log in

Harmonic Maass forms and periods

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

According to Waldspurger’s theorem, the coefficients of half-integral weight eigenforms are given by central critical values of twisted Hecke \(L\)-functions, and therefore by periods. Here we prove that the coefficients of the holomorphic parts of weight \(1/2\) harmonic Maass forms are determined by periods of algebraic differentials of the third kind on modular and elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For brevity we will often drop the attribute “weak” in this paper.

References

  1. Borcherds, R.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491–562 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over \({\mathbb{Q}}\): wild 3-adic exercises. J. Am. Math. Soc. 14, 843–939 (2001)

    Google Scholar 

  3. Bringmann, K., Ono, K.: Dyson’s ranks and Maass forms. Ann. Math. 171, 419–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruinier, J.H.: Borcherds products on O\((2, l)\) and Chern classes of Heegner divisors. Springer Lecture Notes in Mathematics, vol. 1780. Springer, Berlin (2002)

  5. Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125, 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruinier, J.H., Ono, K.: Heegner divisors. L-functions and harmonic weak Maass forms. Ann. Math. 172, 2135–2181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruinier, J.H., Ono, K., Rhoades, R.: Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues. Math. Ann. 342, 673–693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruinier, J.H., Strömberg, F.: Computation of harmonic Maass forms. Exp. Math. 21(2), 117–131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cremona, J.E.: Algorithms for Modular Elliptic Curves. Cambridge University Press, London (1997)

    MATH  Google Scholar 

  10. Duke, W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92, 73–90 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eichler, M., Zagier, D.: The Theory of Jacobi forms, Progress in Mathematics, vol. 55. Birkhäuser, Basel (1985)

    Book  Google Scholar 

  12. Edixhoven, B.: On the Manin constants of modular elliptic curves. In: van der Geer, G., Oort, F., Steenbrink, J. (eds) Arithmetic Algebraic Geometry, Texel (1989). Progr. Math. vol. 89, pp. 25–39. Birkhäuser, Boston (1991)

  13. Gross, B., Kohnen, W., Zagier, D.: Heegner points and derivatives of \(L\)-series. II. Math. Ann. 278, 497–562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Griffiths, P.A., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  15. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katok, S., Sarnak, P.: Heegner points, cycles and Maass forms. Isr. J. Math. 84, 193–227 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kohnen, W., Zagier, D.: Values of \(L\)-series of modular forms at the center of the critical strip. Invent. Math. 64(2), 175–198 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kontsevich, M., Zagier, D.: Periods. Mathematics Unlimited-2001 and Beyond, pp. 771–808. Springer, Berlin (2001)

    Book  Google Scholar 

  19. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. Current developments in mathematics, 2008, pp. 347–454. Int. Press, Somerville (2009)

    Google Scholar 

  20. Scholl, A.J.: Fourier coefficients of Eisenstein series on non-congruence subgroups. Math. Proc. Camb. Phil. Soc. 99, 11–17 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shimura, G.: On modular forms of half integral weight. Ann. Math. 97(2), 440–481 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Skoruppa, N.-P.: Developments in the theory of Jacobi forms. In: Kuznetsov, N., Bykovsky, V. (eds.) Proceedings of the Conference on Automorphic Funtions and their Applications, Chabarovsk. The USSR Academy of Science (1990), 167–185. (see also MPI-preprint 89–40, Bonn (1989).)

  23. Skoruppa, N.-P.: Explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms. Invent. Math. 102, 501–520 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Skoruppa, N.-P., Zagier, D.: Jacobi forms and a certain space of modular forms. Invent. Math. 94, 113–146 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Waldschmidt, M.: Nombers transcendents et groupes algébraiques. Astérisque, 69–70 (1979)

  26. Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9) 60(4), 375–484 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zagier, D.: Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono]. Séminaire Bourbaki 60éme année, 2006–2007, no. 986

  29. Zwegers, S.P.: Mock \(\vartheta \)-functions and real analytic modular forms, \(q\)-series with applications to combinatorics, number theory, and physics. In: Berndt, B.C., Ono, K. (eds.) Contemp. Math., vol. 291, pp. 269–277. Amer. Math. Soc. (2001)

  30. Zwegers, S.P.: Mock theta functions. Ph.D. Thesis, Universiteit Utrecht (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hendrik Bruinier.

Additional information

The author is partially supported by DFG Grant BR-2163/2-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruinier, J.H. Harmonic Maass forms and periods. Math. Ann. 357, 1363–1387 (2013). https://doi.org/10.1007/s00208-013-0945-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0945-y

Mathematics Subject Classification (2000)

Navigation