Skip to main content
Log in

The Hölder continuity of the solution map to the \(b\)-family equation in weak topology

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that the solution map of the \(b\)-family equation is Hölder continuous as a map from a bounded set of \(H^s(\mathbb{R }), s>\frac{3}{2}\) with \(H^r(\mathbb{R })\) (\(0\le r<s\)) topology, to \(C([0, T], H^r(\mathbb{R }))\) for some \(T>0\). Moreover, we show that the obtained exponent of the Hölder continuity is optimal when \(s-1<r<s\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Aronszajn, N.: Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57, 147–190 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5, 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boussinesq, J.: Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal. Comptes Rendus Acad. Sci. Paris 73, 256–260 (1871)

    MATH  Google Scholar 

  6. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. 17(2), 55–108 (1872)

    MATH  Google Scholar 

  7. Boussinesq, J.: Essai sur la théorie des eaux courants. Mém. Acad. Sci. Inst. Nat. Fr. 23(1), 1–680 (1877)

    Google Scholar 

  8. Burgers, J.M.: Nonlinear Diffusion Equations. Reidel, Dordrecht (1974)

  9. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Camassa, R., Holm, D., Hyman, J.: An new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  11. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S., Wynne, S.: The Camassa-Holm equations and turbulence. Phys. D 133, 49 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 233, 60–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A.: On the Cauchy problem for the periodic Camassa-Holm equation. J. Differ. Equ. 141, 218–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin, A.: On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sci. 10, 391–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Escher, J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 51, 475–504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  22. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D 157, 75–89 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Constantin, A., Strauss, W.A.: Stability of peakons. Comm. Pure Appl. Math. 53, 0603–0610 (2000)

    Article  MathSciNet  Google Scholar 

  24. Constantin, A., Strauss, W.A.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dai, H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  27. Degasperis, A., Procesi, M.: Symmetry and perturbation theory. In: Degasperis, A., Gaeta, G. (eds.) Asymptotic Integrability, pp. 23–37. World Scientific, Singapore (1999)

    Google Scholar 

  28. Dullin, H.R., Gottwald, G., Holm, D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501–4504 (2001)

    Article  Google Scholar 

  29. Dullin, H.R., Gottwald, G., Holm, D.D.: Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Escher, J., Seiler, J.: The periodic \(b\)-equation and Euler equations on the circle. arXiv: 1001.2987v1.

  31. Escher, J., Yin, Z.: Well-posedness, blow-up phenomena, and global solutions for the \(b\)-equation. J. Reine Angew. Math. 624, 51–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Foias, C., Holm, D.D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Phys. D 152, 505 (2001)

    Article  MathSciNet  Google Scholar 

  33. Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14, 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D 4, 47–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gui, G., Liu, Y., Tian, L.: Global existence and blow-up phenomena for the peakon \(b\)-family of equations. Indiana Univ. Math. J. 57, 1209–1234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Herr, S., Ionescu, A., Kenig, C., Koch, H.: A para-differential renormalization technique for nonlinear dispersive equations. Comm. PDE 35, 1827–1875 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Himonas, A.A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Diff. Int. Equ. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Himonas, A.A., Misiołek, G.: High-frequency smooth solutions and well-posedness of the Camassa-Holm equation. Int. Math. Res. Not. 51, 3135–3151 (2005)

    Article  Google Scholar 

  39. Himonas, A.A., Misiołek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Comm. Math. Phys. 296, 285–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Himonas, A.A., Misiołek, G., Ponce, G.: Non-uniform continuity in \(H^1\) of the solution map of the CH equation. Asian J. Math. 11, 141–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Holm, D.D., Marsden, J.E., Ratiu, T.S.: Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80, 4173 (1998)

    Article  Google Scholar 

  42. Holm, D.D., Staley, M.F.: Wave structures and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Sys 3, 323–380 (2003)

    Article  MathSciNet  Google Scholar 

  43. Hopf, E.: The partial differential equation \(u_t+uu_x=u_{xx}\). Comm. Pure Appl. Math. 3, 201–230 (1950)

    Google Scholar 

  44. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

  45. Johnson, R.S.: The Camassa-Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–111 (2003)

    Article  MATH  Google Scholar 

  46. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Sokes equation. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kenig, C., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kenig, C., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106, 617–633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Koch, H., Tzvetkov, N.: Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res. Not. 30, 1833–1847 (2005)

    Article  MathSciNet  Google Scholar 

  51. Kodama, Y.: On integrable systems with higher order corrections. Phys. Lett. A 107, 245–249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kodama, Y.: Normal forms for weakly dispersive wave equations. Phys. Lett. A 112, 193–196 (1985)

    Article  MathSciNet  Google Scholar 

  53. Kodama, Y.: On solitary-wave interaction. Phys. Lett. A 123, 276–282 (1987)

    Article  MathSciNet  Google Scholar 

  54. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag. 39(5), 422–442 (1895)

    Article  MATH  Google Scholar 

  55. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lin, Z., Liu, Y.: Stability of peakons for the Degasperis-Procesi equation. Comm. Pure Appl. Math. 62, 125–146 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Liu, Y., Yin, Z.Y.: Global existence and blow-up phenomena for the Degasperis-Procesi equation. Comm. Math. Phys. 267, 801–820 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Marsden, J.E., Ratiu, T.S., Shkoller, S.: The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. 10, 582 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Marsden, J.E., Shkoller, S.: Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-\(\alpha \)) equations on bounded domains. Phil. Trans. R. Soc. Lond. A 359, 1449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. McKean, H.P.: Breakdown of the Camassa-Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Misiołek, G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mustafa, O.G.: A note on the Degasperis-Procesi equation. J. Nonlinear Math. Phsy. 12, 10–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Russell, J.S.: Report on Water Waves. British Association Report (1844)

  64. Tao, T.: Global well-posedness of the Benjamin-Ono equation in \(H^1({\mathbb{R}})\). J. Hyperb. Diff. Equ. 1, 27–49 (2004)

    Article  MATH  Google Scholar 

  65. Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  66. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1980)

    Google Scholar 

  67. Yin, Z.: On the Cauchy problem for an integrable equation with peakon solutions. Illi. J. Math. 47, 649–666 (2003)

    MATH  Google Scholar 

  68. Yin, Z.: Blow-up phenomenon for the integrable Degasperis-Procesi equation. Phys. Lett. A 328, 157–162 (2004)

    Article  MathSciNet  Google Scholar 

  69. Ziemer, W.P., Weakly Differentialble Functions. Springer, Berlin (1989)

Download references

Acknowledgments

This research is partially supported by the AMS Fan Fund Travel Grant 2010. The work of Chen is partially supported by the NSF Grant DMS-0908663. The work of Liu is partially supported by the NSF Grants DMS-0906099 and DMS-1207840, the NHARP Grant-003599-0001-2009, and the NSF-China Grant-11271192. The work of Zhang is supported in part by the NSF-China grants No. 11171135 and 11271164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R.M., Liu, Y. & Zhang, P. The Hölder continuity of the solution map to the \(b\)-family equation in weak topology. Math. Ann. 357, 1245–1289 (2013). https://doi.org/10.1007/s00208-013-0939-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0939-9

Keywords

Navigation