Skip to main content
Log in

Homogeneous almost quaternion-Hermitian manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

An almost quaternion-Hermitian structure on a Riemannian manifold \((M^{4n},g)\) is a reduction of the structure group of \(M\) to \(\mathrm{Sp}(n)\mathrm{Sp}(1)\subset \text{ SO }(4n)\). In this paper we show that a compact simply connected homogeneous almost quaternion-Hermitian manifold of non-vanishing Euler characteristic is either a Wolf space, or \(\mathbb{S }^2\times \mathbb{S }^2\), or the complex quadric \(\text{ SO }(7)/\mathrm{U}(3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.: Lectures on Lie Groups. The University of Chicago Press, Chicago (1969)

    MATH  Google Scholar 

  2. Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3), vol. 10. Springer, Berlin (1987)

    Google Scholar 

  3. Borel, A., de Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23, 200–221 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  4. Joyce, D.: The hypercomplex quotient and the quaternionic quotient. Math. Ann. 290, 323–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Joyce, D.: Compact hypercomplex and quaternionic manifolds. J. Differ. Geom. 35, 743–761 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Maciá, O.: A nearly quaternionic structure on SU(3). J. Geom. Phys. 60(5), 791–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Martín Cabrera, F.: Almost quaternion-Hermitian manifolds. Ann. Global Anal. Geom. 25, 277–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martín Cabrera, F., Swann, A.F.: Almost Hermitian structures and quaternionic geometries. Differ. Geom. Appl. 21(2), 199–214 (2004)

    Article  MATH  Google Scholar 

  9. Martín Cabrera, F., Swann, A.F.: The intrinsic torsion of almost quaternion-Hermitian manifolds. Ann. Inst. Fourier. 58(5), 1455–1497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martín Cabrera, F., Swann, AF.: Quaternion geometries on the twistor space of the six-sphere. arXiv:1302.6397

  11. Moroianu, A., Pilca, M.: Higher rank homogeneous Clifford structures. J. Lond. Math. Soc. (2013). doi:10.1112/jlms/jds061

  12. Moroianu, A., Semmelmann, U.: Clifford structures on Riemannian manifolds. Adv. Math. 228, 940–967 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moroianu, A., Semmelmann, U.: Weakly complex homogeneous spaces. J. Reine Angew. Math. (2013). doi:10.1515/crelle-2012-0077

  14. Moroianu, A., Semmelmann, U.: Invariant four-forms and symmetric pairs. Ann. Global Anal. Geom. 43, 107–121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Salamon, S.M.: Quaternionic Kähler manifolds. Invent. Math. 67, 143–171 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Samelson, H.: Notes on Lie Algebras. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  17. Swann, A.F.: Some Remarks on quaternion-Hermitian manifolds. Arch. Math. 33, 349–354 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech. 14, 1033–1047 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Moroianu.

Additional information

This work was supported by the contract ANR-10-BLAN 0105 “aspects conformes de la Géométrie”. The second-named author thanks the Centre de Mathématiques de l’École Polytechnique for hospitality during the preparation of this work.

Appendix: Root systems

Appendix: Root systems

For the basic theory of root systems we refer to [1] and [16].

Definition 4.1

A set \(\mathcal R \) of vectors in a Euclidean space \((V,\langle \,\!\cdot ,\,\cdot \!\,\rangle \!)\) is called a root system if it satisfies the following conditions:

  1. R1:

    \(\mathcal R \) is finite, \(\mathrm{span}(\mathcal R )=V\), \(0\notin \mathcal R \).

  2. R2:

    If \(\alpha \in \mathcal R \), then the only multiples of \(\alpha \) in \(\mathcal R \) are \(\pm \alpha \).

  3. R3:

    \(\frac{2\langle \,\!\alpha ,\,\beta \!\,\rangle }{\langle \,\!\alpha ,\,\alpha \!\,\rangle }\in \mathbb Z \), for all \(\alpha , \beta \in \mathcal R \).

  4. R4:

    \(s_\alpha :\mathcal R \rightarrow \mathcal R \), for all \(\alpha \in \mathcal R \) (\(s_\alpha \) is the reflection \(s_\alpha :V\rightarrow V\), \(s_\alpha (v):=v -\frac{2\langle \,\!\alpha ,\,v\!\,\rangle }{\langle \,\!\alpha ,\,\alpha \!\,\rangle }\alpha \)).

Let \(G\) be a compact semi-simple Lie group with Lie algebra \(\mathfrak g \) endowed with an \(\mathrm{ad}_\mathfrak{g }\)-invariant scalar product. Fix a Cartan sub-algebra \(\mathfrak t \subset \mathfrak{g }\) and let \(\mathcal R (\mathfrak{g })\subset \mathfrak t ^*\) denote its root system. It is well-known that \(\mathcal R (\mathfrak{g })\) satisfies the conditions in Definition 4.1. Conversely, every set of vectors satisfying the conditions in Definition 4.1 is the root system of a unique semi-simple Lie algebra of compact type.

Remark 4.2

(Properties of root systems). Let \(\mathcal R \) be a root system. If \(\alpha ,\beta \in \mathcal R \) such that \(\beta \ne \pm \alpha \) and \(\Vert \beta \Vert ^2\ge \Vert \alpha \Vert ^2\), then either \(\langle \,\!\alpha ,\,\beta \!\,\rangle =0\) or

$$\begin{aligned} \left( \frac{\Vert \beta \Vert ^2}{\Vert \alpha \Vert ^2}, \frac{2\langle \,\!\alpha ,\,\beta \!\,\rangle }{\langle \,\!\alpha ,\,\alpha \!\,\rangle }\right) \in \{(1,\pm 1),(2,\pm 2),(3,\pm 3)\}. \end{aligned}$$
(10)

In other words, either the scalar product of two roots vanishes, or its absolute value equals half the square length of the longest root. Moreover,

$$\begin{aligned} \beta -\mathrm{sgn}\left( \frac{2\langle \,\alpha ,\,\beta \!\,\rangle }{\langle \,\!\alpha ,\,\alpha \!\,\rangle }\right) k\alpha \in \mathcal R , \quad \text{ for } \text{ all } k\in \mathbb Z , 1\le k\le \biggl |\frac{2\langle \,\!\alpha ,\,\beta \!\,\rangle }{\langle \,\!\alpha ,\,\alpha \!\,\rangle }\biggr |. \end{aligned}$$
(11)

Definition 4.3

([11]) A set \(\mathcal P \) of vectors in a Euclidean space \((V,\langle \,\!\cdot ,\,\cdot \!\,\rangle \!)\) is called a root sub-system if it satisfies the conditions R1–R3 from Definition 4.1 and if the set \(\overline{\mathcal{P }}\) obtained from \(\mathcal P \) by taking all possible reflections is a root system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroianu, A., Pilca, M. & Semmelmann, U. Homogeneous almost quaternion-Hermitian manifolds. Math. Ann. 357, 1205–1216 (2013). https://doi.org/10.1007/s00208-013-0934-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0934-1

Mathematics Subject Classification (2010)

Navigation